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ABSTRACT
Online citizen science platforms can be crucial to the scientific and regulatory community, 
but inherent biases based on organism traits can influence the likelihood of a species 
being reported and accurately identified. We explored how traits of orb weaving spiders 
impact data in iNaturalist, using the invasive Jorō spider as a case study. This species is 
an outlier among orbweavers due to its large size and bright coloration, and was the 
most frequently reported species, with the most identifications and research-grade 
observations. It was also reported by less experienced users on average, highlighting 
its potential role as a gateway species into community science participation. This bias 
towards large, flashy orbweaver species suggests underrepresentation of smaller, drab 
species. Given the increasing importance of open access digital biodiversity records, we 
encourage researchers to engage more with the iNaturalist community and contribute 
their expertise in improving the data quality wherever possible.
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INTRODUCTION

Community science (CS) datasets have been increasingly 
utilized to assess a broad range of biological and ecological 
questions. From 2008 to 2017, approximately 1,700 peer-
reviewed publications used CS data (specifically the Global 
Biodiversity Information Facility; GBIF: https://www.gbif.
org/) (Chandler et al. 2017); however, by March 2020, 
that number more than doubled to 4,307 publications 
(Callaghan et al. 2021a). Many recognize CS data as an 
extremely valuable source of information for biological 
research and conservation (Theobald et al. 2015; Callaghan 
et al. 2017, 2021a; Chandler et al. 2017; Pocock et al. 2018; 
Kelling et al. 2019; Di Cecco et al. 2021; Campbell et al. 
2023; Hulbert et al. 2023), though caution is warranted in 
relying on these data (Aceves-Bueno et al. 2017).
Community science projects fall along a continuum from 
unstructured to structured. Structured projects have clearly 
defined data collection protocols and goals (e.g., Breeding 
Bird Surveys), whereas unstructured projects lack these 
characteristics, relying more on opportunistic observations 
(Kelling et al. 2019). Both structured and unstructured 
projects have advantages and disadvantages. For example, 
while structured projects may produce more systematic 
observations, which can reduce sampling bias, the 
specificity and difficulty inherent in following a collection 
protocol may reduce the number of participants, thus 
the amount of data generated. Conversely, unstructured 
CS projects (frequently conducted using iNaturalist: 
https://www.inaturalist.org) are more susceptible to 
spatiotemporal and observer-based biases (Callaghan 
et al. 2019) but may generate more observations. As of 
November 2022, iNaturalist had 2.5 million observers 
who reported more than 135 million species occurrences 
worldwide (Campbell et al. 2023). An important aspect of 
iNaturalist is a community-based identification process for 
observations post submission (Campbell et al. 2023; Agrin 
et al. 2008). Observations are classified as “research grade” 
(RG) when two or more iNaturalist users have agreed on 
a species-level or finer taxonomic identification. If there 
is disagreement among identifiers, a greater than two-
thirds consensus identification is required for RG status. 
The majority of scientific research utilizing iNaturalist data 
includes only RG observations.

Despite the challenges associated with using data 
generated by unstructured CS projects, iNaturalist has been 
increasingly used to investigate a broad range of topics, 
including species distribution modeling (Johnston et al. 
2020; Milanesi et al. 2020; Nelsen et al. 2023), phenological 
studies (Di Cecco et al. 2022), species discovery and 
rediscovery (Winterton 2020; Molyneaux 2023), and 
monitoring invasive species (Dimson et al. 2023; Hulbert 

et al. 2023; Mesaglio and Callaghan 2021; Nelsen et al. 
2023). Thus, a more detailed understanding of the biases 
associated with iNaturalist data, both for initial recorded 
observations and the community identification process, is 
important to ensure accurate conclusions when utilizing 
this valuable resource.

Spatial biases in data from unstructured CS projects 
are well documented (Courter et al. 2013; Ward 2014; 
Geldmann et al. 2016; Hart et al. 2018; Di Cecco et al. 2021), 
including from projects that utilize iNaturalist (Kosmala 
et al. 2016). Observation density is often clustered in 
and around cities and other areas with a high population 
density (Ward 2014; Geldmann et al. 2016). Additionally, 
certain habitats, land use types, and geographic areas 
(e.g., terrestrial versus marine, urban greenspaces versus 
rural areas, and Europe versus Africa) are over- or under-
sampled proportionate to their representation in the 
landscape (Geldmann et al. 2016; Di Cecco et al. 2021). 
Temporal biases are also common in data from CS projects. 
For example, sampling effort increases on weekends, 
decreases at night, and decreases during the winter in 
temperate regions of the Northern Hemisphere (Courter et 
al. 2013; Hart et al. 2018; Di Cecco et al. 2021). In addition 
to these broad-scale patterns, biases can also occur at the 
user level, where they are influenced by observer behavior 
and species’ characteristics.

Understanding bias in the initial reporting of species 
and the subsequent identification is essential for scientists 
relying on data from the GBIF because only RG iNaturalist 
records are part of GBIF. Since unstructured CS projects 
rely on opportunistic observations submitted by individuals 
from a wide variety of backgrounds and levels of expertise, 
user behavior can greatly impact data collection and 
reporting. Recent studies have shown that iNaturalist 
observers and identifiers tend to “specialize” in certain 
taxonomic groups, such as insects, birds, or mammals (Di 
Cecco et al. 2021; Campbell et al. 2023). Furthermore, even 
within these broader taxonomic groups, many users focus 
on certain taxa (e.g., Lepidoptera [butterflies and moths] 
or Cicindelinae [tiger beetles]). In addition, most iNaturalist 
observations and identifications are contributed by only 
a small percentage of users, with the typical iNaturalist 
observer submitting just a single observation (Di Cecco 
et al. 2021; Campbell et al. 2023). Among observers that 
submit more than one observation, many treat iNaturalist 
as a list-keeping device, submitting only one observation of 
each species (Di Cecco et al. 2021). Community scientists 
disproportionately report “conspicuous,” “charismatic,” and 
“showy” taxa (Di Cecco et al. 2021; Ward 2014), particularly 
in unstructured datasets relative to semi-structured (e.g., 
eBird: https://ebird.org/) (Callaghan et al. 2021b; Stoudt et al. 
2022). However, the behaviors and morphological features 

https://www.gbif.org/
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https://www.inaturalist.org
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contributing to taxa being showy or conspicuous are not 
uniform and have not been quantified for most taxonomic 
groups. Additionally, for iNaturalist datasets, it is equally 
important to explore how natural history traits influence 
user interaction during the community identification 
process, which occurs after submission of observations.

Orbweaving spiders of the family Araneidae are a 
model taxonomic group in which to explore how natural 
history traits influence iNaturalist user interactions with 
different species, from observation through identification. 
There are many common and widespread orbweaver 
species that, while varying in size, appearance, and 
behavior, still share basic natural history traits (e.g., web 
building, general morphology) that unite them in public 
perception. Additionally, the recent introduction of a non-
native orbweaver into the southeastern U.S. facilitates 
this exploration of trait-based biases among community 
scientists within the context of invasive species monitoring. 
The large-bodied and brightly colored Asian Jorō spider, 
Trichonephila clavata, was introduced around 2010 to 
northern Georgia, U.S. (Hoebeke et al. 2015; Chuang et 
al. 2023). In its introduced range, T. clavata is one of the 
largest orbweaver species and spins large, golden webs 
regularly on and around buildings and other artificial 
structures. This has brought T. clavata to the general 
public’s awareness, with almost half (3,269/7,019 as of 
[2023/07/28]) of all iNaturalist observations coming from 
its smaller, introduced range. These spiders now have an 
established population in at least four states, spanning an 
area greater than ~120,000 km2, with additional iNaturalist 
sightings as far from the center in Georgia as West Virginia 
and Maryland (Chuang et al. 2023; Nelsen et al. 2023). 
Where it has been introduced the longest, T. clavata has 
become the most common orb weaving spider observed 
(Nelsen et al. 2023). Thus, the Jorō spider presents an ideal 
opportunity to explore further how observers engage with 
iNaturalist, allowing us to address questions about biases 
associated with CS data.

We compared how iNaturalist users engaged on 
iNaturalist with the Jorō spider compared with other 
common orbweavers across the same geographic 
area. Some species from other spider families (e.g., 
Tetragnathidae, Uloboridae) are also known to construct 
orb webs. We excluded them from this study to restrict 
our analyses within a single family, Araneidae. Hereafter, 
we use orbweaver to exclusively describe species in 
Araneidae. Specifically, we examined which behavioral 
and morphological traits influenced community scientists 
when reporting and identifying these species. We expected 
the more showy species, with bright colors, striking 
patterns, and large size to drive more community science 
interaction. We further explored how these traits impacted 

data quantity and quality, such as the percentage of 
observations that are RG and the speed with which they 
achieve that status. Our analysis evaluated both biases 
in user behavior when reporting species and during the 
iNaturalist-specific system of community identification. 
Overall, we analyzed how iNaturalist data quantity and 
quality is influenced by natural history traits by comparing 
T. clavata to native orbweavers within its introduced range.

METHODS

DATASET
We downloaded all araneid orbweaver iNaturalist 
observations from the eastern U.S. (east of the Mississippi 
River) using the iNaturalist API on June 30, 2023. We retained 
only those observations identified to species level by the 
iNaturalist community and classified as RG by iNaturalist. 
RG observations include a photograph, date, coordinates, 
and a species identity agreed upon by the iNaturalist 
community. This dataset contained ~118,000 observations 
by ~47,000 unique users. The oldest observation was from 
2009, but 99% were submitted to iNaturalist from 2016 
onward. We analyzed observation data for 31 of the most 
reported species (Supplemental Table 1), all of which had 
more than 250 RG observations (700+ total).

ASSIGNING BEHAVIORAL AND MORPHOLOGICAL 
TRAITS TO SPECIES
We scored each species in our analysis according to a set of 
behavioral and morphological traits. We selected traits we 
hypothesized would influence how iNaturalist users interact 
with that species rather than a comprehensive treatment 
of natural history across species. Although we did not use 
images of male or immature spiders when scoring their 
characteristics, adult female orbweavers are the most 
likely to appear in community science observations due to 
the larger size of their body and web. We chose (1) total 
body length (mm), (2) presence/absence of bright colors 
(e.g., colors other than black, gray, or brown), (3) presence/
absence of a contrasting color pattern (e.g., stripes, 
spots), (4) presence/absence of distinctive morphological 
features (e.g., abdominal spines, leg tufts, hump-shaped 
abdomens), (5) diurnal presence on web, (6) presence/
absence of web stabilimentum or other non-standard 
web feature (e.g., cultivated web debris), (7) web diameter 
(cm), and (8) seasonal activity peak. This approach is 
similar to that of Caley et al. (2020), and our trait values 
for each species are displayed in Table 1. Due to a lack of 
standardized published web-size data for many species, 
we included body size rather than web size in our final 
analyses (data for total body length has been published for 
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SPECIES SIZE 
(mm)

BRIGHT CONTRAST UNIQUE DIURNAL SEASON1 POLY
MORPHIC

WEB 
DECORATION

Acanthepeira stellata (Walckenaer 
1805)

11.50 no no yes no early no no

Araneus bicentenarius (McCook 
1888)

24.75 no yes yes no early no no

Araneus diadematus2 Clerck 
1757

13.25 no yes no yes late yes no

Araneus marmoreus Clerck 1757 13.50 yes yes no yes late yes no

Araneus nordmanni (Thorell 1870) 13.00 no yes no yes late no no

Araneus pegnia (Walckenaer 
1841)

 5.93 no yes no yes late yes no

Araneus trifolium (Hentz 1847) 14.50 yes yes no yes late yes no

Araniella displicata (Hentz 1847)  6.00 yes yes no yes early yes no

Argiope argentata (Fabricius 1775) 14.00 yes yes yes yes early no yes

Argiope aurantia Lucas 1833 23.75 yes yes no yes late no yes

Argiope trifasciata (Forsskål 1775) 20.00 yes yes no yes late no yes

Cyclosa turbinata (Walckenaer 
1841)

 4.25 no no yes yes late no yes

Eriophora ravilla (C. L. Koch 1844) 18.00 yes yes no no early yes no

Eustala anastera (Walckenaer 
1841)

 7.15 no no no no early no no

Gasteracantha cancriformis 
(Linnaeus 1758)

 8.13 yes yes yes yes late no yes

Gea heptagon (Hentz 1850)  5.15 no no yes yes early no no

Larinioides cornutus (Clerck 1757) 10.25 no no no no early no no

Larinioides sclopetarius (Clerck 
1757)

11.00 no no no no early no no

Mangora gibberosa (Hentz 1847)  9.10 yes yes no yes late no no

Mangora placida (Hentz 1847)  3.45 yes yes no yes early no no

Mecynogea lemniscata 
(Walckenaer 1841)

 7.50 yes yes no yes early no yes

Metepeira labyrinthea (Hentz 
1847)

 5.85 no no no no late no yes

Micrathena gracilis (Walckenaer 
1805)

 8.88 yes yes yes yes late no no

Micrathena mitrata (Hentz 1850)  6.18 yes yes yes yes late no no

Micrathena sagittata (Walckenaer, 
1841)

 7.75 yes yes yes yes late no no

Neoscona arabesca (Walckenaer, 
1841)

 7.48 yes no no no early no no

Neoscona crucifera (Lucas 1838) 14.30 yes no no no late no no

Neoscona domiciliorum (Hentz 
1847)

11.60 no yes no no late yes no

(Contd.)
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all species in our analysis). For species where web diameter 
estimates were available, web size and total body length 
were highly correlated (r = 0.81).

All authors independently scored brightness, contrast, 
and presence/absence of distinct morphology for all species 
using photos of females submitted to iNaturalist within the 
study area. Traits not scored unanimously were discussed 
by the authors until a consensus was reached, as in the 
methodology in Mammola et al. 2022. We scored traits 
for each species based on the appearance and behavior of 
mature females because these constitute an overwhelming 
majority of araneid observations on iNaturalist (personal 
obs.; JFD, AC). We gathered information for other traits 
from published resources (Bradley 2012; Gaddy 2009). We 
report total body length (Table 1) as the mean of the values 
reported by sources.

During the trait-scoring process described above, we 
determined that several species (n = 7) exhibit substantial 
variation in body coloration and patterning (Table 1). 
For example, Araneus diadematus individuals vary from 
dull brown to bright orange. We scored these species as 
“brightly colored” and “contrastingly patterned,” even if 
certain individuals were not brightly colored or contrastingly 
marked, and classified them as polymorphic. We ran 
analyses with and without polymorphic species included. 
Results did not differ significantly when polymorphic 
species were excluded, so we present results from the 
analysis including all species.

MEASURING REPORT FREQUENCY
To account for different range sizes (as represented on 
iNaturalist) across species, report frequency was scaled to 
the number of RG observations per 1,609 km2 (1,000 mi2) 
of the reported range. We calculated distribution estimates 
with kernel density estimation (KDE) using the amt R 
package (Signer et al. 2019). To reduce biases from large-
scale spatial patterns, we first filtered observation data to 
allow only one observation per 20 km2 grid using the spThin 

R package (Aiello-Lammens et al. 2015). We ran the KDE at 
90% coverage to estimate the core reported range of each 
species.

QUANTIFYING OVERALL USER ENGAGEMENT
We calculated a user engagement score (UES) for each user 
in our dataset as the mean of their number of observations, 
species reported, and identifications posted on observations 
from other users. Because of different orders of magnitude 
in the raw values, these three variables were scaled to µ 
= 0, sd = 1 before calculating the UES metric. While the 
UES metric does not perfectly represent the real-world 
knowledge and experience of each user, it quantifies 
their engagement with the iNaturalist platform in a single 
numerical value. Additionally, we believe that in many 
cases, this metric is an acceptable proxy for experience 
level among users.

USER ENGAGEMENT FOR EACH SPECIES
In addition to report frequency, we calculated the following 
values for each species in our analysis: (1) single species 
observer percentage (% of users having reported at least 
one observation of that species who have not reported 
any other species to iNaturalist), (2) percentage of RG 
observations contributed by single species observers, (3) 
mean UES of users having reported that species, (4) mean 
number of times a user reports that species (for casual 
[<50 observations] and committed [50+] users), (5) mean 
number of identifications contributed by users on an 
observation of that species, (6) median time (hours) until 
an observation of that species is identified by an iNaturalist 
user (not the original observer), and (7) percentage of 
observations of that species that are classified as RG.

MODELING HOW TRAITS INFLUENCE 
INATURALIST USERS
We first used a linear modeling approach to test our 
hypothesis that behavioral and morphological traits 

SPECIES SIZE 
(mm)

BRIGHT CONTRAST UNIQUE DIURNAL SEASON1 POLY
MORPHIC

WEB 
DECORATION

Trichonephila clavata (L. Koch 
1878)

22.38 yes yes no yes late no no

Trichonephila clavipes (Linnaeus 
1767)

28.25 yes yes yes yes late no no

Verrucosa arenata (Walckenaer 
1841)

 7.83 yes yes yes yes late no no

Table 1 Values of behavioral and morphological traits assigned to study species, with non-native species in bold (World Spider Catalog 2023).
1 Early/Late = majority of iNaturalist observations submitted before or after August 1, respectively.
2 Bold text indicates species that are introduced to North America (NA). A. diadematus and L. sclopetarius have been present in NA for over 
a century. The status of G. heptagon is less certain, but it has also been present in NA for an extended period of time.
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influence the representation of species in the iNaturalist 
dataset. We also constructed random forest regression 
models as an alternative method to independently 
corroborate our linear regression results (Caley et al. 2020). 
We fitted models for the following four variables: (1) report 
frequency (normalized by range size), (2) mean UES, (3) 
number of identifications per observation, and (4) % RG 
observations. We used these four response variables to 
analyze observation and identification patterns within the 
iNaturalist dataset.

For the linear regressions, we constructed a candidate 
set of models for each response variable. We performed 
one-way ANOVAs on each trait for each response variable. 
Traits with a significant or near-significant effect (p < 0.10) 
were included in the “global” model for that response 
variable. We examined the homogeneity of residuals by 
plotting model residuals against model-fitted values. We 
visually inspected quantile-quantile plots to confirm model 
residuals were normally distributed. We performed model 
selection based on second order Akaike’s Information 
Criterion (AICc) adjusted for small sample sizes, using the 
MuMIn R package (Bartoń 2020) and ranked candidate 
models by ΔAICc (Zuur et al. 2009). We averaged 
statistically indistinguishable candidate models (ΔAICc < 
2) to obtain coefficient estimates for fixed effects. If one 
model performed significantly better than all other models 
(ΔAICc > 2), we reported coefficient estimates for that 
candidate model. We summed Akaike weights (wi) across 
all candidate models to evaluate the relative importance 
of each fixed effect. If a parameter had a 95% confidence 
interval not overlapping zero, we concluded that the 
parameter had a significant effect on the response variable. 
The linear regression analyses were conducted in R v. 4.1.1.

The random forest algorithm is a machine-learning 
technique that combines the results of many individual, 
independent trees into a consensus tree. It uses a bootstrap 
aggregation approach that samples a subset of the data with 
replacements for each tree constructed. It then combines 
all the trees using majority vote or averaging, depending 
on whether the algorithm is used for classification or 
regression. Because a random forest methodology may 
perform better than AIC for large datasets (Sanchez-Pinto 
et al. 2018), we also used the randomForest package 
(version 4.7–1.1; Breiman 2001) to construct regression 
models for each response variable, including all predictor 
variables except web size (see above). We used a gridded 
search to tune our hyperparameters, that is, parameters 
that must be specified before running each model, in this 
case, mytr (the number of variables randomly sampled at 
each split), sampsize (size of sample data drawn at each 
node), and nodesize (minimum size of terminal nodes). 
We selected the values for each hyperparameter that 

minimized the out-of-bag (OOB) error rate and ran 2,000 
trees per model. We used both the randomForest and 
randomForestExplainer (version 0.10.1; Ishwaran et al. 
2010) packages to evaluate model coverage and variable 
importance. We evaluated model performance by splitting 
our data into 5 folds and calculating the R2 between actual 
and estimated dependent variables. We did this five times 
for each dependent variable using a different fold for testing 
each time and report the average R2. All data analyses were 
performed in R v. 4.3.1 (R Core Team 2023).

RESULTS

INFLUENCE OF NATURAL HISTORY TRAITS
Overall, the linear regression and random forest results 
were very similar. We observed only a few cases where the 
random forest analysis supported an additional variable not 
identified by the linear regression. However, both methods 
consistently identified similar variables as predictive of 
reporting and engagement metrics.

The top-performing linear regression model for mean 
UES was statistically distinguishable (ΔAICc > 2) and 
accounted for 75% of the total model weight. The top-
performing model accounted for 45% of the variance 
in mean UES. Body size (LM: z = 5.07, p < 0.001) was 
a significant predictor of mean UES for a species. The 
random forest model (average R2 = 0.85) predicted 31% 
of the variance in mean UES and body size was the most 
important predictor of mean UES (Table 2).

The top-performing linear regression model for report 
frequency was statistically distinguishable (ΔAICc > 2) 
and accounted for 75% of the total model weight. The 
top-performing model accounted for 46% of the variance 
in report frequency. Body size (LM: z = 3.62, p = 0.001) 
and the presence of bright colors (LM: z = 3.12, p = 0.004) 
were significant predictors of report frequency. The 
random forest model (average R2 = 0.97) predicted 35% 
of the variance in report frequency. Body size and the 
presence of bright colors were the most important (i.e., 
had the greatest permutation scores) predictors of report 
frequency (Table 2).

The four top-performing linear regression models for 
mean identifications per observation were statistically 
indistinguishable (ΔAICc < 2) and accounted for 68% of 
the total model weight (Supplemental Table 2). The top-
performing model accounted for 68% of the variance in 
mean identifications per observation. Body size (LM: z = 
2.28, p = 0.03) and diurnal presence on the web (LM: z = 
3.94, p < 0.001) were significant predictors of identifications 
per observation (Supplemental Figure 1). The random forest 
model predicted 67% of the variance in identifications 
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per observation. The random forest model (average R2 
= 0.98) also found that body size and diurnal presence 
on the web were important predictors of identifications 
per observation. However, the random forest model also 
found that the presence of contrasting color patterns 
had a greater permutation score than body size (Table 2; 
Supplemental Figure 2).

The two top-performing linear regression models for 
% RG were statistically indistinguishable (ΔAICc < 2) and 
accounted for 61% of the total model weight. The top-
performing model accounted for 69% of the variance in 
% RG. The presence of contrasting color patterns (LM: z 
= 3.73, p < 0.001), diurnal presence on the web (LM: z = 
2.80, p = 0.01), and presence of distinct morphological 
features (LM: z = 2.41, p = 0.02) were significant predictors 
of % RG (Figure 1). The random forest model (average R2 
= 0.97) predicted 66% of the variance in % RG. Similar 
to the linear regression results, diurnal presence on the 
web, the presence of contrasting color patterns, and the 
presence of distinct morphological traits were the most 
important predictors of % RG. However, the random forest 

models found that the presence of bright colors had a 
greater permutation score than the presence of unique 
morphological traits (Table 2).

REPRESENTATION IN INATURALIST DATASET
After accounting for variation in geographic distribution, the 
most frequently reported species were T. clavata, as well 
as Argiope argentata, Trichonephila clavipes, Gasteracantha 
cancriformis, and Argiope aurantia. The least frequently 
reported species were Eustala anastera, Acanthepeira 
stellata, Mangora gibberosa, Metepeira labyrinthea, and 
Larinioides sclopetarius (Supplemental Table 1).

Few (3.1%) iNaturalist users in the dataset reported only 
a single species to iNaturalist. Among species included in 
our analysis, T. clavata was reported the most frequently 
by single-species users, with 10.8% of T. clavata observers 
reporting only this species (Figure 2). The species with the 
second highest report rate from single-species users was 
Eriophora ravilla (3.2%), and over half of the species were 
reported by less than 1% of such users. Six species had no 
single-species user observations, including Cyclosa turbinata 

Table 2 Modeling results. Traits are shown in the table if they were included in the top-performing Linear Regression models or with >10% 
increase in mean squared error (MSE) in the Random Forest model. ID: identification, RG: research grade, UES: user engagement score.

RESPONSE LINEAR REGRESSION RANDOM FOREST

PARAMETER ESTIMATE CI WEIGHT % 
INCREASE
MSE

INCREASE
NODE 
PURITY

EFFECT

User engagement

Size –1.56 –2.19, –0.93 1.0 47.79 3.85 UES decreases with size.

Report frequency

Bright 0.47 0.16, 0.78 1.0 26.12 1.87 Bright colors increase reports.

Size 1.17 0.51, 1.83 1.0 23.81 3.58 Reports increase with size.

Contrast – – – 14.07 0.86 Contrast increases report.

IDs per observation

Contrast 0.12 –0.02, 0.26 0.57 34.57 0.32 Contrast increases IDs.

Size 0.27 0.05, 0.50 1.0 24.29 0.19 IDs increase with size.

Diurnal 0.28 0.14, 0.41 1.0 33.16 0.30 Diurnal activity increases IDs.

Bright – – – 12.66 0.06 Bright colors increase IDs.

RG %

Contrast 0.20 0.08, 0.31 1.0 33.6 3763 Contrast increases RG %.

Diurnal 0.15 0.04, 0.26 1.0 35.0 4251 Diurnal activity increases RG %.

Unique 0.10 0.02, 0.19 1.0 13.04 865 Unique morphology increases 
RG%.

Bright – – – 19.8 1785 Bright colors increase RG %
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and Neoscona arabesca. Only 1.3% of observations in the 
dataset were contributed by single-species users, and of 
these, T. clavata had the highest percentage of reports 
(7.6%) contributed by such users. The next highest report 
rates were from E. ravilla and A. diadematus with 2.3% 

each. Twenty-two species in our dataset had less than 1% 
(Supplemental Table 1).

The mean user engagement score (UES) for a species 
strongly correlated with the range-corrected report 
frequency of that species in the dataset (Figure 3). Species 

Figure 1 Influence of morphological traits on the percentage of iNaturalist observations for a species that are classified as research grade.

Figure 2 Percentage of iNaturalist observations reported by single-species users plotted against percentage of single-species users for 
each species included in analysis.
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reported more frequently were reported by less-engaged 
users (lower mean UES), and species reported less 
frequently were reported more often by more-engaged 
users (higher mean UES). Overall, UES decreased with size, 
with T. clavata having the lowest UES among the species 
included in the analysis (Supplemental Table 1), followed 
by A. aurantia, Araneus marmoreus, Neoscona crucifera, 
and A. diadematus.

Species with bright colors, larger size, and more visual 
contrast were reported more often (Table 2). Most users 
reported only 1 observation per species, and 80% of 
species-observer pairs in the dataset were represented by a 
single observation. Among both casual (<50 observations) 
and committed (50+ observations) iNaturalist users, T. 
clavata and Eustala anastera had the highest and lowest 
mean number of reports per user, respectively (Figure 4).

The mean and median number of identifications (not 
counting those by the original observer) made on an 
observation were 1.1 and 1, respectively. Identifications 
were increased in species with more contrast, larger size or 
bright colors, or diurnal activity (Table 2). Species with the 
highest mean number of identifications per observation 

were T. clavata (2.33), T. clavipes (1.83), G. cancriformis 
(1.57), and the three Argiope species (Supplemental Table 
1). Species with the lowest mean number of identifications 
per observation were L. sclopetarius (0.30), E. anastera 
(0.34), and N. crucifera (0.45).

The median time until the first identification by an 
iNaturalist user was 17.2 hours. Species with the fastest 
time to identification included T. clavata (1.1 hours), 
G. cancriformis (1.4 hours), and A. aurantia (1.5 hours) 
(Supplemental Table 1). Species with the longest time until 
identification were M. gibberosa (15 days), A. diadematus (2 
days), and Mecynogea lemniscata (2 days).

At the time of analysis, most (81%) of the observations 
of analyzed species were classified as RG (identifications 
occasionally lose RG status, see Campbell et al. 2023). 
Overall, species with a higher contrast, diurnal activity, 
unique morphology, or bright colors tended to contribute to 
an increased percentage of RG observations (Table 2). Species 
with the highest percentage of observations classified as RG 
were G. cancriformis (99.3%), A. aurantia (99.1%), and T. 
clavipes (99.0%). Species with the lowest percentages were 
L. sclopetarius (20.8%), E. anastera (23.8%), and N. crucifera 

Figure 3 Mean user engagement score (UES) among users reporting a species plotted against the number of research grade (RG) 
observations of that species per 1000 miles2 of range. Lower UES scores indicate species typically reported by more casual iNaturalist users, 
whereas higher scores indicate species typically reported by more committed iNaturalist users. The dotted line represents the average 
engagement level of users among analyzed species. Species represented with photos are marked with an asterisk.
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(31.2%). Nearly all T. clavata observations (96.1%) were RG 
(Supplemental Table 1).

DISCUSSION

Analyses of iNaturalist records revealed how the 
representation of species in a community science dataset 
is influenced by interactions between species’ traits and 
observer behavior. Notably, the recently introduced T. clavata 
is a clear outlier across numerous metrics, having generated 
widespread reporting and high levels of community 
engagement compared to a similar congener, T. clavipes, 
and other orbweavers. This invasive species provides 
valuable insight into community science, monitoring of new 
non-native species, and biases in datasets.

Both of our analyses found that orbweaver body size 
predicted multiple aspects of iNaturalist user behavior, from 

how frequently species were reported, to the degree of user 
engagement, and even the number of identifications for 
each observation. This corroborates findings from studies 
on insects (Caley et al. 2020), birds (Callaghan et al. 2021b; 
Stoudt et al. 2022), molluscs (Barbato et al. 2021; Rosa et 
al. 2022), and reptiles (Wittmann et al. 2019) that show 
larger species are reported more often. Spider body size 
and its correlated trait, web diameter, may be particularly 
important since it influences the probability of detection in 
nature. In fact, body size may interact strongly with other 
morphological traits we considered; for instance, bright or 
contrasting color patterns may be more easily perceived on 
larger species than on smaller species.

Body size also influences the difficulty of taking a clear 
photograph of a subject (Stoudt et al. 2022; Barbato et al. 
2021; Unger et al. 2021). This may be especially true for 
casual users taking photos with a smartphone, which may 
not have the macrophotography capabilities to capture 

Figure 4 Number of observations reported for each species by individual users. Mean and 95% confidence interval is reported for users 
with more than 50 total observations and for users with less than 50 total observations. These two groups correspond with the top two 
thirds and bottom third of users by UES, respectively. Species represented with photos are marked with an asterisk.
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crisp images of small subjects. Blurry photos may then 
deter users from uploading to iNaturalist or reduce the 
willingness of other users to engage, as low image quality 
makes it difficult to distinguish features necessary to 
identify subjects to species (Wittmann et al. 2019).

Both analyses revealed that physical and behavioral 
traits influenced community science engagement, where 
bright and contrasting coloration, unique and larger body 
morphologies, and diurnal activity predicted multiple 
metrics of user engagement. Distinctive coloration, notable 
appearance, and larger body size are all known to contribute 
to the visual charisma of species (Gobster 2011; Shackleton 
et al. 2019, Beever et al. 2019; Unger et al. 2021). A striking 
appearance, along with the perceived noteworthiness 
or novelty of a species, likely boosts iNaturalist user 
engagement (Caley et al. 2020; Stoudt et al. 2022). This 
creates a bias in the data available to researchers through 
GBIF, as only RG observations are included. Distribution 
maps of less striking species should be viewed skeptically 
when generated from community science sources (Caley 
et al. 2020).

Our case study, T. clavata, is large, diurnally active, 
and has bright contrasting color patterns. Additionally, 
it received a barrage of sensationalist media coverage 
in 2022 as a recent invader (Chuang et al. 2023), with 
media outlets speculating that “[z]illions of large Jorō 
spiders could invade [the] U.S. East Coast” and calling for 
community members to watch out for their impending 
arrival. Potentially in response, multiple projects were 
launched on iNaturalist, dedicated to encouraging users to 
upload observations with the goal of tracking this species. 
Heightened public awareness of “giant parachuting spiders 
coming [their] way” in addition to this species possessing 
a full suite of conspicuous traits has likely created ideal 
conditions for high user engagement.

We believe these circumstances have allowed T. clavata 
to become a “gateway species” into iNaturalist, drawing 
users to the app solely to document the invasion. Indeed, 
among the species analyzed, T. clavata had the greatest 
proportion of observations reported by users who have not 
reported any other species (Figure 2). Users also repeatedly 
submitted observations of T. clavata, breaking with the 
more typical species checklist behavior on iNaturalist 
(Figure 4). This pattern was notable for both casual and 
committed iNaturalist users, indicating that observers of all 
experience levels interact with T. clavata in a unique way 
compared with native orbweavers. This could be reflective 
of observers being motivated to document the range 
expansion of this non-native species.

T. clavata also represents an extreme in the dataset by 
having the most observations from the least experienced 
users (Figure 3). The accessibility of T. clavata to novice 

users is likely attributable to its large body size, striking 
color patterns, and substantial web. Indeed, the four 
species with the most observations from the least engaged 
users (T. clavata, T. clavipes, A aurantia, and G. cancriformis) 
all have some combination of those eye-catching traits. It 
is notable that the native golden orbweaver, T. clavipes, 
does not exhibit a pattern of observations as extreme 
on iNaturalist, considering it has similar web and body 
features as its close relative, T. clavata (Kuntner et al. 
2023). Although T. clavipes is a larger species, the density 
of its observations corrected for its range size is under half 
of that for T. clavata. This sheds light on the likely effect of 
a well-publicized, invasive species in piquing the interest of 
community scientists.

Our study shows that species’ traits bias every step of 
the iNaturalist process, from recording an observation, 
receiving user identifications, to achieving RG status. These 
compounding biases can limit the usefulness of community-
level datasets to infer relative species abundance, as less 
striking species will be poorly represented in frequently 
used data sources such as GBIF. While research on species 
like T. clavata benefits from the increased engagement of 
both casual and committed iNaturalist users, data on small, 
less conspicuous species likely suffer from underreporting, 
misidentifications, or a lack of identifications. This is 
particularly true of species that cannot be identified without 
the help of magnification, dissection, chemical analyses, or 
sequencing (McMullin and Allen 2022). Thus, the frequency 
of observations between species should not be used to 
infer real-life differences in species’ abundance without 
acknowledging the role of species’ characteristics in report 
and identification frequency. While distribution maps made 
from iNaturalist observations of highly engaging species 
might be relatively accurate, the opposite is likely true of 
small, less conspicuous species. These biases are especially 
important to consider when tracking invasive species, since 
species lacking striking traits will be less likely to be reported 
by community scientists (Caley et al. 2020).

Considering the documented biases of community 
science data sets, we provide the following 
recommendations to researchers on how to maximize 
their benefits from using iNaturalist data, especially when 
studying small species lacking distinct colors or patterns:

(1) Conduct outreach on species of interest. Researchers 
can bring awareness to species of interest within 
iNaturalist by creating projects and journal posts, and 
by sharing resources in the iNatForum. Advertising a 
research need to find particular species can provide 
a sense of purpose, motivating users to contribute 
observations. Project descriptions should clearly detail 
the research aims and any additional information and 
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features to be requested, for example, the inclusion of 
plant hosts and substrates in photographs or details 
about sex, life stage, or invasive status. Including 
information about the size of the organism and how 
to distinguish it from similar species will improve 
the quality of data collected. Connections with 
iNaturalist users may also provide the opportunity 
to collect specimens (e.g., for DNA analyses). Using 
iNaturalist to make structured projects will be more 
useful for obscure taxa (Caley et al. 2020), especially if 
coupled with active recruitment and training (Hulbert 
et al. 2023). Recruitment and training can occur 
during public outreach events, media interviews, 
and extension workshops. Social media and cross-
platform posts can be an effective means of sharing 
iNaturalist projects and sparking public interest.

(2) Engage with the community, especially with 
experienced users. We encourage researchers to 
view iNaturalist as a community in which to invest 
and reciprocally contribute, not just a platform from 
which to extract data. Intermediate and advanced 
users are particularly worth engaging with by 
providing feedback on identifications and comments 
on distinguishing traits of species. By spending time 
engaging in refining identifications, researchers will 
increase the quality of community science data 
by increasing the number of RG observations and 
challenging any observations incorrectly regarded 
as RG. Currently, approximately 60% of observations 
and 75% of identifications are made by the top 
1% of users (Di Cecco et al. 2021; Campbell et al. 
2023). Advanced users often already possess strong 
taxonomic skills, specializing on specific groups of 
interest (Campbell et al. 2023), and may even relish 
the challenge of searching for small, dull, and rare 
species in the field (Randler et al. 2023). Providing 
links to useful resources such as reputable regional 
guides and taxonomic keys as well as updates on an 
iNaturalist project can also encourage continuous 
user engagement. We also recommend offering co-
authorship or credit in the acknowledgements section 
of a paper to recognize substantial contributions.

(3) Upload data from surveys to iNaturalist. Taxonomic 
biases in iNaturalist datasets may be improved if 
researchers upload geotagged photographs from 
structured survey datasets. Data from structured 
surveys utilizing systematic methods to locate 
species of interest (e.g., use of UV lights for moths) 
or conducted outside of typical circumstances (e.g., 
nocturnally) may help provide a more accurate record 
of species diversity and distributions. iNaturalist 
has a computer vision model that uses machine 

learning approaches to suggest identifications to 
users. Uploading accurately identified photographs, 
especially of obscure species, can add new taxa to the 
model as well as refine its identification capabilities. 
These photographs can also provide more reference 
material for the community, especially if certain 
species are not already known to a region on the app. 
Amidst concerns of biodiversity declines (Wagner 
et al. 2021; Rosenberg et al. 2019), media-based 
collections and CS datasets will play an increasingly 
important role in future biodiversity and taxonomic 
research.

CONCLUSION

Representation of species in community science datasets 
is influenced by characteristics of species being recorded, 
patterns of user behavior, and the interactions between 
these two factors. We used T. clavata as an example 
to highlight the power of iNaturalist as a community 
science tool and to explore observation and identification 
biases in the dataset. Natural history characteristics drive 
representation in the iNaturalist dataset, but T. clavata 
indicates that public awareness from media coverage 
may also play an important role. Researchers using 
community science datasets to monitor invasive species, 
or otherwise, should be conscientious of these biases to 
ensure accurate interpretation of the data provided by 
iNaturalist and other CS projects. Our recommendations 
should result in more RG observations, which are of the 
greatest value to scientific endeavors. Data quality is, in 
part, a reflection of community scientist engagement, 
arguing for researchers to be active participants in the 
broader community.
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