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ABSTRACT
Most programs that create opportunities for the public to engage in scientific research 
invite the public to collect data, but there is a call to expand opportunities for engagement 
in additional aspects of the scientific process. One reason behind this call is the hypothesis 
that people who participate to a greater degree in the scientific process experience more 
robust learning outcomes. To test this hypothesis, we conducted a quasi-experiment by 
using a pre-post survey design and comparing varying degrees of participation in a Bird 
Cams Lab investigation. Bird Cams Lab was a virtual space in which the public worked with 
scientists to design and implement co-created investigations involving live streaming or 
recorded footage of birds. We found that the higher the degree of participation in the 
investigation, the greater the increase in content knowledge, self-efficacy, and self-
reported improvement in science inquiry skills. Interestingly, involvement in data collection 
was associated with the greatest gains in content knowledge and self-efficacy regardless 
of involvement in other parts of the scientific process. For programs with limited funding 
and resources that seek to increase participants’ content knowledge and self-efficacy, 
focusing efforts on supporting data collection may be the most impactful.
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INTRODUCTION

Thousands of programs around the world create 
opportunities for the public to be involved in scientific 
research, which we will refer to as public participation in 
scientific research or PPSR (Shirk et al. 2012). The types 
of activities in PPSR programs vary widely, as do the 
expectations of institutions and scientists for how involved 
the public will be in the scientific process (Newman et al. 
2012; Shirk et al. 2012). In addition to research goals, PPSR 
programs often have educational goals (Shirk et al. 2012), 
and the participants themselves have personal goals 
(Haywood 2016).

Evidence is mounting that participation in these programs 
is associated with individual learning outcomes (Aristeidou 
and Herodotou 2020; Bonney et al. 2016). Previous studies 
have found linkages between participation and increases 
in participants’ content and science knowledge (Aristeidou 
and Herodotou 2020; Law et al. 2021). Beyond knowledge, 
there is evidence that participation is related to increases 
in participants’ interests, self-efficacy, motivation, science 
inquiry skills, and even certain behaviors (Aristeidou and 
Herodotou 2020; Crall et al. 2012; Jakositz et al. 2022; Peter 
et al. 2021a; Toomey and Domroese 2013).

Much of what we know about linkages between PPSR 
and participant outcomes is from programs focused on 
the data collection process. There is a growing call by 
practitioners and funding agencies to create opportunities 
for participants to contribute more often and in deeper 
ways (Aristeidou and Herodotou 2020; Cooper et al. 2007; 
Phillips et al. 2019). This type of full participation is often 
referred to as “co-created,” whereby participants engage in 
all facets of the scientific process. This co-created approach 
is purported to result in stronger learning outcomes than 
other types of participation, such as “contributory,” whereby 
participants engage in only data collection (Bonney et al. 
2009; Shirk et al. 2012).

Little is known, however, about how participant 
outcomes relate to the degree of participation in the 
scientific process (Phillips et al. 2019; Shirk et al. 2012). 
Recent research has found that the degree of participation 
within data collection can influence participant outcomes 
(Masters et al. 2016; Prather et al. 2013), but there 
remains a gap in our understanding of how the degree of 
participation, defined by Shirk et al. (2012) as the “extent 
to which individuals are involved in the process of scientific 
research,” relates to individual outcomes. Furthermore, 
most examples of successful co-creation are at the local 
or community level (Bonney et al. 2009), and it is unclear 
if co-creation is possible for projects that seek to involve 
participants at large spatial scales, entirely online.

To address these gaps, we sought to examine how 
providing opportunities for participants to engage in 
multiple stages of the scientific process relates to individual 
learning outcomes through Bird Cams Lab, a virtual space 
for online cam watchers to work with scientists to design 
and implement co-created scientific investigations. We 
created Bird Cams Lab to 1) provide opportunities for the 
public to engage in all parts of the scientific process, 2) 
advance understanding of effective project design for 
co-created PPSR programs at a large spatial scale, and 3) 
investigate how the degree of participation was associated 
with participant learning outcomes.

We focused on one Bird Cams Lab investigation to 
test the hypothesis that participant outcomes would be 
more robust as the degree of participation in the scientific 
process increased (Bonney et al. 2009). We focused on five 
outcomes based on the Framework for Articulating and 
Measuring Individual Learning Outcomes from Participation 
in Citizen Science (Phillips et al. 2018), and sought to 
answer the following questions: 1) Is a greater degree 
of participation in the scientific process associated with 
increases in participants’ content knowledge, self-efficacy 
in engaging in the investigation, interest in birds, science 
inquiry skills, and behaviors related to birding, science, and 
conservation? 2) If participation is correlated with learning 
outcomes, which phases of the scientific process are 
associated with the greatest increases?

METHODOLOGY

STUDY DESIGN
From 2018 to 2020, Bird Cams Lab created six investigations 
that engaged approximately 16,000 people, of which 2,014 
took part in the focal investigation called “Battling Birds: 
Panama” (Borland 2021). “Battling Birds: Panama” ran 
December 2020–June 2021 and used the Cornell Lab of 
Ornithology’s Panama Fruit Feeder cam, a live-streaming 
wildlife camera focused on a bird feeding platform located 
at the Canopy Lodge in El Valle de Antón, Panama.

We employed a pre-post survey design with people who 
were invited to engage in optional activities spanning the 
entire scientific process, which were categorized into four 
phases: question design, data collection, data exploration, 
and sharing findings. For this study, we constrained our 
analyses to the first three phases because we sent out the 
post-survey before the “sharing findings” phase as a result 
of time constraints (Table 1). We gathered participation data 
using a variety of sources, including online discussion board 
comments and votes, webinar registration and attendance 
data, website login information, and survey questions.
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This study was conducted under the guidance and 
approval of the Institutional Review Board for Human 
Participants (IRB) at Cornell University under protocol 
#1804007970.

SURVEY INSTRUMENT
We administered the optional pre- and post-surveys via 
the Qualtrics platform. Based on participant feedback and 
performance during a separate study (Borland 2021), we 
edited survey questions and dropped any that did not 
provide meaningful data. Both surveys included questions 
about respondents’ contribution to the investigation, 
participation in other Bird Cams Lab investigations, 
demographics, interest in birds, self-efficacy in engaging 
in the investigation, content knowledge specific to the 
Panama Fruit Feeder cam, science inquiry skills, and 
behaviors related to birding, science, and conservation. The 
post-survey also included self-report questions regarding 
respondents’ improvement in science inquiry skills. The 
pre- and post-survey questions relevant to this study are 
available in the supplemental materials (Supplemental 
File 2: Pre-survey Questions and Supplemental File 3: Post-
survey Questions).

Independent variables
We quantified the degree of participation with two 
variables: 1) “number of phases” in which a respondent 
engaged in the investigation, and 2) the “specific phase(s)” 
in which the participant engaged (e.g., data collection 
and data exploration). We created these variables using 
respondents’ self-reported data from the post-survey and 
participation data. We treated both variables as categorical 
with “number of phases” having four categories (0,1,2,3) 
and “specific phase(s)” having eight categories (no phases, 
question design only, data collection only, data exploration 
only, question design and data collection, question design 

and data exploration, data collection and data exploration, 
and all three phases). We considered “number of phases” = 
0 and “specific phase(s)” = “no phases” as the baseline and 
reference level for analyses.

The other independent variables included were age, 
gender, education level, science training, and participation 
in other Bird Cams Lab investigations. We were unable 
to account for any potential differences due to race and 
ethnicity because data was limited (Table 2). Owing to 
small sample sizes, we reduced gender to female/male 
and education to five levels, excluding “grade school” in the 
main model analyses (although we were able to include 
all levels for both variables in the dropout analysis, which 
is explained below). For science training, there were four 
possible levels, which we collapsed to two (yes/no) to 
indicate if they had any training at all (Supplemental File 2: 
Pre-survey Questions). For participation in other Bird Cams 
Lab investigations, we created a binary variable (Yes/No) 
based on self-reported and actual participation data.

Dependent variables
Interest in birds: We calculated the difference between 
pre- and post-surveys (hereafter post-pre difference) 
in a composite score created from three statements 
(Supplemental File 4: Dependent Variable Details). Scale 
reliability for the score using Cronbach’s alpha was 0.813 
for the pre-survey, suggesting good internal consistency 
(Taber 2018).

Self-efficacy: We calculated the post-pre difference in 
a composite score created from six statements measuring 
self-efficacy in engaging in the investigation (hereafter 
“self-efficacy”) (Supplemental File 4: Dependent Variable 
Details). Scale reliability for the score using Cronbach’s alpha 
was 0.766, suggesting acceptable consistency (Taber 2018).

Content knowledge: We calculated the post-pre 
difference in a score based on correct answers for a 

PHASE ACTIVITIES

Question design 1. Propose and/or comment on possible research questions.

2. Vote for the preferred question on the discussion board.

3. Attend a webinar on study design.

4. Vote for what type of data would be collected.

Data collection 1. Test the data collection protocol and give feedback.

2. Collect data from video clips recorded by the cam.

3. Post on the discussion forums.

4. Take a quiz about species identification and behavior.

Data exploration 1. View the interactive visualization pages.

2. Comment and/or vote on the discussion boards.

3. Attend a webinar on data interpretation.

4. Request and/or analyze data.

Table 1 For each of the scientific phases included in the analyses, participants were given opportunities to engage with each other and 
scientists in a variety of ways (See Supplemental File 1: Activities for more details and screenshots of each activity).
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TOTAL (ALL 
PRE-SURVEY 
RESPONDENTS)

PRE-SURVEY ONLY PRE- AND  
POST-SURVEY

N % OF 
TOTAL

N % OF 
TOTAL

N % OF 
TOTAL

Total number of respondents 1801 100% 1445 80.2% 356 19.8%

N % OF 
SAMPLE

N % OF 
SAMPLE

N % OF 
SAMPLE

Number of phases * None 1265 70.2% 1124 77.8% 141 39.6%

1 272 15.1% 189 13.1% 83 23.3%

2 109 6.1% 32 2.2% 77 21.6%

3 58 3.2% 3 0.2% 55 15.4%

Missing 97 5.4% 97 6.7% 0 0.0%

Specific phase(s) * Question design 269 14.9% 150 10.4% 119 33.4%

Data collection 211 11.7% 46 3.2% 165 46.3%

Data exploration 185 10.3% 66 4.6% 118 33.1%

Participated in other
Bird Cams Lab investigations *

Yes 582 32.3% 375 26.0% 149 41.9%

No 1219 67.7% 1070 74.0% 207 58.1%

Pre-survey campaign * First 1098 61.0% 857 59.3% 241 67.7%

Second 703 39.0% 588 40.7% 114 32.0%

Highest level of formal 
education

Grade school 8 0.4% 7 0.5% 1 0.3%

High school 199 11.0% 167 11.6% 32 9.0%

Associate degree 153 8.5% 120 8.3% 33 9.3%

Bachelor degree 527 29.3% 415 28.7% 112 31.5%

Master’s degree 458 25.4% 352 24.4% 106 29.8%

Doctorate degree 191 10.6% 147 10.2% 44 12.4%

Prefer not to answer 57 3.2% 49 3.4% 8 2.2%

Missing 208 11.5% 188 13.0% 20 5.6%

Science training Yes 616 34.2% 485 33.6% 131 36.8%

No 970 53.9% 767 53.1% 203 57.0%

Missing 215 11.9% 193 13.4% 22 6.2%

Gender identity * Female 1167 64.8% 904 62.6% 263 73.9%

Male 352 19.5% 290 20.1% 62 17.4%

Non-binary 24 1.3% 22 1.5% 2 0.6%

Prefer to self-describe 12 0.7% 7 0.5% 5 1.4%

Prefer not to disclose 37 2.1% 32 2.2% 5 1.4%

Missing 209 11.6% 190 13.1% 19 5.3%

Race/ethnicity American Indian or Alaska 
Native

1 0.1% 1 0.1% 0 0.0%

Asian 24 1.3% 22 1.5% 2 0.6%

Black or African American 2 0.1% 2 0.1% 0 0.0%

Hispanic 22 1.2% 21 1.5% 1 0.3%

Native Hawaiian or Other 
Pacific Islander

2 0.1% 2 0.1% 0 0.0%

White 531 29.5% 433 30.0% 98 27.5%

Other 16 0.9% 15 1.0% 1 0.3%

Prefer not to answer 32 1.8% 25 1.7% 7 2.0%

Missing 1188 66.0% 941 65.1% 247 69.4%

 Mean (SE) N Mean (SE) N Mean (SE) N

Age * 54.60 (0.43) 1523 53.80 (0.50) 1202 57.40 (0.85) 321

Table 2 Characteristics of all those who completed the pre-survey, completed the pre-survey only, and completed both the pre- and post-
surveys.

Notes: For age, standard errors are reported for means and the sample sizes (N) do not include missing values. Asterisks next to variables 
indicate a statistically significant difference (p < 0.05) between respondents who completed the pre-survey only and those who 
completed both surveys.
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nine-question multiple-choice quiz about the birds and 
food seen on the Panama Fruit Feeder cam as well as 
relevant scientific terms (Supplemental File 4: Dependent 
Variable Details).

Observed science inquiry skills (identifying answerable 
research questions): We created the post-pre difference of 
a score for a question that presented five research questions 
and asked respondents to identify which were answerable 
(Supplemental File 4: Dependent Variable Details).

Observed science inquiry skills (interpreting data): We 
created the post-pre difference of a score for a question 
that asked respondents to interpret a stacked bar chart 
(Supplemental File 4: Dependent Variable Details).

Self-reported improvement in science inquiry skills: 
We modified the Skills of Science Inquiry scale from the 
Technical Brief Series (Phillips, Porticella, and Bonney 2017) 
such that it began with the statement, “This project improved 
my ability to,” we reduced the number of statements from 
twelve to eight, and we customized the wording of each 
statement to the investigation experience (Supplemental 
File 4: Dependent Variable Details). We calculated the mean 
score of the eight statements presented on the post-survey 
to create a composite “science inquiry improvement” 
score. Scale reliability for the score using Cronbach’s alpha 
was 0.908, suggesting excellent internal consistency (Taber 
2018).

Behavior: We created the post-pre difference in the 
number of behaviors respondents indicated that they had 
done in the past year (hereafter “behavior score”). The 
research team created a list of ten options, which included 
behaviors related to birds, science, and conservation 
(Supplemental File 4: Dependent Variable Details).

SURVEY ADMINISTRATION, PARTICIPATION, 
AND CLEANING
We used a convenience sampling method (Bryman 2012) 
to recruit people to take the optional pre-survey in two 
campaigns. Before the investigation began, we distributed 
the survey to potential participants and the Bird Cams Lab 
community in November and December 2020. Then, in 
January 2021, we distributed the survey again to recruit 
additional participants before the data collection phase. 
While this second distribution allowed us to reach more 
people, because we used this method of recruitment, 
participants who completed the pre-survey in this second 
distribution campaign may have already engaged in the 
question design phase. On May 17, 2021, after the data 
exploration phase was complete, we distributed the 
optional post-survey to 8,479 individuals via an email list 
that included those who took the pre-survey as well as 
anyone who opened at least one Bird Cams Lab email, 
subscribed to the Bird Cams Lab email list, or contributed 

to any Bird Cams Lab investigation. For more information 
about survey administration, see the supplemental 
materials (Supplemental File 5: Survey Administration and 
Cleaning).

The pre-survey was opened 2,060 times. We could not 
calculate a true response rate because we distributed the 
survey via social media channels and other platforms. 
There were 1,800 useful responses after we removed 260 
responses (Supplemental File 5: Survey Administration and 
Cleaning). The post-survey was opened by 1,490 people 
(17.57% of the 8,479), and we had 999 useful responses 
after removing 491 responses (Supplemental File 5: Survey 
Administration and Cleaning).

ANALYSES
Creating sample for analyses
Of the 1,800 pre-survey responses and 999 post-survey 
responses, we matched 356 respondents’ surveys by email 
address and first and last names (19.8% of pre-survey 
responses; Table 2). We also matched participation data 
to the 356 responses using email addresses, usernames, 
and first and last names. Then, we created the variables for 
analyses and checked survey responses for straightlining 
(i.e., when a respondent selects the same answer for blocks 
of questions resulting in zero variance) as a check for bots 
and low-quality responses, finding no evidence of low 
quality or bots (Wardropper et al. 2021).

Dropout analysis
Because participants self-selected the phases in which 
they engaged, we tested for potential sample bias in 
who completed the post-survey responses. Using t-tests, 
Chi-square tests, and Fisher’s Exact tests, we compared 
participants who took only the pre-survey with those who 
took both the pre- and post-surveys in terms of the number 
of phases in which they engaged, whether or not they 
engaged in each phase, their demographics, the survey 
distribution campaign, and whether they contributed to 
other investigations.

Model analyses
We ran linear regressions in R 4.1.3 (R Core Team 2022) 
to determine if participants’ self-reported improvement 
in science inquiry skills and changes in interest in birds, 
self-efficacy, content knowledge, observed science inquiry 
skills, and behavior were associated with 1) increased 
involvement in the scientific process and 2) certain phases 
of the scientific process.

We modeled each dependent variable twice as a 
function of: 1) the “number of phases,” and 2) the “specific 
phase(s).” The following variables were included in the 
models to control for possible confounding effects: age 
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(centered at its mean), gender, highest education level, 
science training, participation in another Bird Cams Lab 
investigation, and survey distribution campaign.

We assessed multicollinearity of each predictor variable 
by calculating the generalized variation inflation factor 
(GVIF, Fox and Monette 1992) using the car package 
(Fox and Weisberg 2019). The GVIF values of all predictor 
variables in the various models were less than three, 
indicating there was no problematic multicollinearity (Fox 
and Monette 1992).

For each model, we assessed the statistical importance 
of each predictor variable with Type II Wald F tests using 
the car package (Fox and Weisberg 2019; Smith and Cribbie 
2014). To understand the effect size of the statistically 
significant predictors, we used the emmeans package 
(Lenth 2022) to calculate the estimated marginal means 
(EMMs). For the main predictors, we visualized the EMMs 
using the ggplot2 package (Wickham 2016), and we 
used the multcomp package (Hothorn, Bretz and Westfall 
2008) to compare the different categorical levels via 
t-tests, adjusting the p-values using the Tukey method. 
The confidence intervals in the graphs are for visualization 
purposes only, and do not reflect the t-tests performed in 
the pairwise comparisons between the EMMs.

For all models and comparisons, we assessed statistical 
significance at α = 0.05. We confirmed model assumptions 
were met by visually inspecting diagnostic plots using the 
performance package (Lüdecke et al. 2021).

RESULTS

PARTICIPANT DEMOGRAPHICS AND 
PARTICIPATION
Respondents who completed both the pre- and post-surveys 
(N = 356) were more likely than those who completed 
only the pre-survey to contribute to the investigation (as 
measured by “number of phases” or “specific phase[s]”), 
to participate in another Bird Cams Lab investigation, to 
take the pre-survey during the first distribution campaign, 
to identify as female, and to be older (p ≤ 0.031; Table 2). 
There was no statistically significant difference in science 
training or in highest education level between those who 
completed both surveys and those who completed the pre-
survey only (p ≥ 0.082).

Of the respondents who completed both surveys, 
most contributed to at least one phase, with the greatest 
percentage engaging in data collection (Table 2). When 
considering all the possible combinations of engagement, 
the most participants engaged in all three phases, followed 
by engagement in data collection and data exploration 
(Figure 1).

INTEREST IN BIRDS
The average “interest in birds” score on the pre-survey was 
4.84 (Standard Deviation (SD) = 0.40, N = 356, Range = 1–5; 
Figure 2), and the average post-pre difference in scores 
was 0.04 (SD = 0.34, N = 355; Figure 2). Most respondents 
(77%) had the maximum “interest in birds” score on the 
pre-survey and had a post-pre difference of 0. In the model 
analyses, the full models did not fit the data better than 
the intercept models (“number of phases” model: R2 = 
0.02, F12,295 = 0.58, p = 0.862; “specific phase(s)” model: R2 
= 0.06, F16,291 = 1.18, p = 0.285). For “interest in birds” and 
all following dependent variables, model output tables are 
available in the supplemental materials (Supplemental File 
6: Model Output).

SELF-EFFICACY
The average self-efficacy score on the pre-survey was 3.55 
(SD = 0.67, N = 356, Range = 1–5; Figure 2), and the average 
post-pre difference in scores was 0.08 (SD = 0.51, N = 313; 
Figure 2). The more phases a respondent contributed to, the 
greater the change in their self-efficacy score from pre- to 
post-survey (F3,259 = 11.71, p < 0.001; Figure 3a). However, 
the increase in self-efficacy scores was not statistically 
significantly different compared with those who didn’t 
contribute until respondents were contributing to at least 
two phases (Figure 3). No covariates were statistically 
significantly associated with the post-pre difference in self-
efficacy scores in this model (p ≥ 0.063; Supplemental File 
7: Type II Wald F Test Results). 

Figure 1 The number of respondents who completed both 
surveys (total N = 356) and contributed to one, two, or three 
phases of the scientific investigation.
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Figure 2 For each dependent variable with a pre-post difference (1–6), distributions of (a) pre-survey scores and (b) post-pre differences 
in scores with the mean shown as a dashed line. Note that the range of the horizontal axes and vertical axes differ, and that this figure 
shows raw data without controlling for other variables included in the statistical analyses.
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In the second model, the “specific phase(s)” in which 
the participants engaged was associated with the post-
pre difference in self-efficacy score (F7,255 = 7.77, p < 0.001), 
with the greatest increase in self-efficacy scores seen for 
respondents who engaged in the data collection phase 
(Figure 3b). Education was the only other predictor variable 
associated with the post-pre difference in self-efficacy 
score (F4,255 = 2.61, p = 0.036). Those who had a doctorate 
degree had 0.37 higher self-efficacy scores compared with 
those who had an associate degree (p = 0.028). The other 
covariates were not statistically significantly associated with 
the post-pre difference in self-efficacy scores in this model 
(p ≥ 0.095; Supplemental File 7: Type II Wald F Test Results).

CONTENT KNOWLEDGE
The average content knowledge score on the pre-survey 
was 3.91 (SD = 2.50, N = 308, Range = 0–9; Figure 2), with 
scores increasing by 1.33 points, on average, from pre- to 
post-survey (SD = 2.14, N = 290; Figure 2). The more phases 
a respondent contributed to, the greater the change in their 
content knowledge score (F3,251 = 20.51, p < 0.001; Figure 4a). 
The increase in content knowledge scores leveled off at two 
phases, such that there was not a statistically significant 

difference between two and three phases (Figure 4a). 
Additionally, the post-pre difference in content knowledge 
score was associated with the survey distribution campaign: 
respondents who completed the pre-survey in the second 
campaign increased their score pre- to post-survey, on 
average, by 0.52 more points than those who completed 
the pre-survey in the first campaign (F1,251 = 3.97, p = 
0.047). The post-pre difference in content knowledge score 
was not associated with the other covariates (p ≥ 0.176; 
Supplemental File 7: Type II Wald F Test Results). 

In the second model, “specific phase(s)” was associated 
with the post-pre difference in content knowledge scores 
(F7,247 = 12.10, p < 0.001), and participants who engaged 
in the data collection phase showed the greatest 
improvement in scores (Figure 4b). None of the covariates 
were statistically significantly related with the post-
pre difference in content knowledge scores (p ≥ 0.135; 
Supplemental File 7: Type II Wald F Test Results).

SCIENCE INQUIRY
For the two questions measuring science inquiry skills, the 
average scores on the pre-survey were 4.40 (SD = 1.05, N 
= 308, Range = 0–5) for “identifying answerable research 

Figure 3 The predicted mean post-pre difference in self-efficacy scores (a) increased with the more phases in which a respondent 
participated, (b) with the greatest increases associated with data collection. Each point is the Estimated Marginal Mean (EMM) post-pre 
difference in self-efficacy scores with 95% confidence intervals (CI). Means not sharing any letter are statistically significantly different 
from the other means by the t-test adjusted using the Tukey method. The horizontal dashed line represents the score for those who did 
not participate at all, and black squares indicate which values are statistically significantly different to the baseline (“no phases”). The 
range on the y-axis reflects the range of values in the matched pre- and post-survey data.
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questions” and 1.72 (SD = 0.51, N = 347, Range = 0–2) for 
“interpreting data,” and the average post-pre difference in 
scores were 0.16 (SD = 0.97, N = 299) and 0.02 (SD = 0.63, 
N = 334), respectively (Figure 2). Most respondents scored 
perfectly on either question on the pre-survey (identifying 
answerable research questions: 66%, interpreting data: 
74%). Additionally, most respondents had a post-
pre difference of 0 for both questions (62% and 69%, 
respectively). When we conducted the model analyses, 
we found that the full models did not fit the data better 
than the intercept models (identifying answerable research 
questions: “number of phases” model: R2 = 0.04, F12,260 = 
0.95, p = 0.500; “specific phase(s)” model: R2 = 0.06, F16,256 
= 1.05, p = 0.403; interpreting data: “number of phases” 
model: R2 = 0.06, F12,284 = 1.51, p = 0.120; “specific phase(s)” 
model: R2 = 0.06, F16,280 = 1.19, p = 0.273). 

The average self-reported improvement in science 
inquiry skills score was 3.47 (SD = 0.73, N = 280, Range 
= 1–5; Figure 5). In the first model, the more phases a 
respondent contributed to, the greater their score (F3,236 
= 11.53, p < 0.001; Figure 6a). However, respondents 
who contributed to one phase did not have a score 
statistically significantly different from those who did not 

contribute; statistically significant differences were seen for 
respondents who contributed to at least two phases (Figure 
6a). Additionally, respondents who participated in another 
Bird Cams Lab investigation had science inquiry scores that 
were 0.32 higher (or 9.47% higher) than those who did 
not (F1,236 = 11.30, p < 0.001). None of the other covariates 
were statistically significantly associated with the score (p 
≥ 0.181; Supplemental File 7: Type II Wald F Test Results). 

In the second model, “specific phase(s)” was associated 
with the improvement in science inquiry skills score (F7,232 = 
5.24, p < 0.001; Figure 6b). Respondents who contributed to 
all three phases had the greatest improvement in science 
inquiry skills compared with those who did not contribute (p 
< 0.001); no other combinations of phases were statistically 
significantly different compared with those who did not 
contribute at all (p ≥ 0.354; Figure 6b). Similar to the first 
model with “number of phases” as the main predictor, 
respondents who participated in another Bird Cams Lab 
investigation had science inquiry scores that were 0.29 
higher (or 8.90% higher) compared with those who did not 
(F1,232 = 8.82, p = 0.003). None of the other covariates were 
statistically significantly related to the score (p ≥ 0.155; 
Supplemental File 7: Type II Wald F Test Results). 

Figure 4 The predicted mean post-pre difference in content knowledge scores (a) increased the more phases in which a respondent 
participated, (b) with the greatest increases associated with data collection. Each point is the EMM post-pre difference in content 
knowledge scores with 95% CI. Means not sharing any letter are statistically significantly different from the other means by the t-test 
adjusted using the Tukey method. The horizontal dashed line represents the score for those who did not participate at all, and black 
squares indicate which values are statistically significantly different from the baseline (“no phases”). The range on the y-axis reflects the 
range of values in the matched pre- and post-survey data.
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Figure 5 For the self-reported improvement in science inquiry skills score, the distribution of scores with the mean shown as a dashed line.

Figure 6 The predicted mean self-reported science inquiry improvement scores (a) increased the more phases in which a respondent 
participated, and (b) no one phase was associated with greater increases. Each point is the EMM scores with 95% CI. Means not sharing 
any letter are statistically significantly different from other means by the t-test adjusted using the Tukey method. The horizontal dashed 
line represents the score for those who did not participate at all, and black squares indicate which values are statistically significantly 
different to the baseline (“no phases”). The range on the y-axis reflects the range of values in the post-survey data.
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BEHAVIOR
The average behavior score on the pre-survey was 7.40 (SD 
= 1.64, N = 356, Range = 1–10; Figure 2), and the average 
post-pre difference in scores was 0.27 (SD = 1.32, N = 356; 
Figure 2). Most respondents (75%) selected at least seven 
of the 10 possible behaviors on the pre-survey. In the 
model analyses, the full models did not fit the data better 
than the intercept models (“number of phases” model: R2 = 
0.05, F12,296 = 1.50, p = 0.248; “specific phase(s)” model: R2 = 
0.05, F16,292 = 1.03, p = 0.430).

DISCUSSION

Using a pre-post survey design, we found that as the 
degree of participation in the scientific process increased, 
so did changes in three learning outcomes: self-efficacy, 
content knowledge, and self-perceived improvement in 
science inquiry skills. Our findings build on what Shirk et al. 
(2012) found: that individual-level outcomes were related 
to the degree of involvement in the scientific process. 
However, there was not a linear relationship between 
number of phases and amount of change or self-perceived 
improvement. When we considered the specific phases in 
which participants engaged, not just the number, we found 
that the impact of each phase was not the same.

Of the three phases participants could engage in, data 
collection was associated with the greatest increases in 
content knowledge regardless of engagement in question 
design and/or data exploration. This result builds on several 
studies that found a link between engagement in PPSR 
programs and increases in content knowledge (Aristeidou 
and Herodotou 2020; Jakositz et al. 2022; Jordan et al. 
2011; Law et al. 2021; Peter et al. 2021a). Interestingly, 
we found this relationship between data collection and 
content knowledge even though additional pathways for 
engagement with the scientific process existed, suggesting 
that observing and recording observations through data 
collection is key to increasing knowledge. Such findings 
align with experiential learning theory, which suggests 
that “knowledge is created through the transformation 
of experience. Knowledge results from the combination 
of grasping and transforming experience” (Kolb 1984, 
p. 41). Indeed, Dickinson et al. (2012) proposed that 
learning could be the greatest during data collection 
because when participants make observations, they start 
to form questions. Additionally, our findings build on an 
experimental study that found no difference in content 
knowledge gains between participants who engaged in 
data collection and those who engaged in data collection 
and data analysis (Greving et al. 2022).

Similar to the content knowledge results, we found that 
data collection was associated with the greatest increases 
in self-efficacy, and that this relationship existed even with 
additional pathways for engaging in the scientific process. 
There was no difference in how much self-efficacy scores 
increased among those who engaged in data collection 
only, data collection and data exploration, or all three 
phases. Our findings support previous work that assessed 
overall participation in PPSR programs and participants’ 
self-efficacy (Ballard and Belsky 2010; Hiller and Kitsantas 
2014; Lynch et al. 2018; Peter et al. 2021a), but contrast 
with other work. Lynch et al. (2018) found that participants’ 
self-efficacy was maintained as a result of participating 
in a contributory project, and Price and Lee (2013) found 
self-efficacy decreased as a result of participation in a co-
created project. In our study, data collection may have 
been associated with the greatest changes in self-efficacy 
because data collection skills were easier to gain compared 
with skills that were needed in question design or data 
analysis (Peter et al. 2021a). Perhaps the easier it is to gain 
skills, the greater a participants’ increase in self-efficacy in 
engaging in the investigation.

Interestingly, no single phase was associated with 
the greatest scores reflecting participants’ self-reported 
improvement in science inquiry skills. This supports the 
hypothesis linking a greater degree of participation to more 
robust participant outcomes because only engagement in 
all three phases was associated with a science inquiry skill 
score that was statistically significantly different compared 
with the baseline group (no engagement) (Bonney et al. 
2009; Shirk et al. 2012). Additionally, our findings provide 
answers to questions proposed by Bonney et al. (2009, p. 
14): “To what extent do participants gain from projects 
because they help shape them?...other questions relate 
to the overall impacts of PPSR participation, including 
participation in areas of inquiry that have not been well 
studied such as…data visualization…” Participants who 
helped shape the investigation, participated in data 
visualization, and contributed to data collection had the 
highest self-perceived improvement in science inquiry 
skills. Our findings also support previous work that linked 
PPSR to gains in science inquiry skills (Bela et al. 2016; Crall 
et al. 2012; Peter et al. 2021a).

In terms of the “interest in birds,” observed science 
inquiry skills, and behavior, we found little to no change, 
and subsequently no relationship with degree of 
participation. Our results contrast with previous work that 
found an increase in interest in the study topic through 
engagement in PPSR (Peter et al. 2021a; Toomey and 
Domroese 2013). Phillips et al. (2018) suggested pre-
existing interest could be high, and as a result, it would 
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not change via participation, which is exactly what we 
found for the “interest in birds” score. We focused our 
advertising efforts on the Cornell Lab’s existing audiences, 
a group generally already interested in birds and engaged 
in behaviors related to birds, science, and conservation 
before the investigation was underway, so there may have 
been little opportunity for increasing interest or changing 
behaviors within our sample population. Additionally, the 
lack of change in observed science inquiry skills may have 
resulted from questions that were too easy, given that the 
majority of respondents’ scores on the pre-survey were 
correct (Figure 2).

There was also no evidence for any relationship between 
learning gains and the other predictor variables in most 
models, except for three instances. First, respondents 
whose highest education level was a doctorate degree 
increased their self-efficacy score more than those who 
had an associate degree. However, education was only 
related to change in self-efficacy in one of the two models, 
and there were no other statistically significant differences 
between the other education levels. Second, we found 
respondents who completed the pre-survey in the second 
survey distribution increased their content knowledge 
more than those who completed the pre-survey in the 
first distribution. Respondents who completed the surveys 
during the different campaigns may have been exposed to 
or understood the project differently, ultimately influencing 
how much they learned about the subject matter. However, 
again, survey distribution was only statistically significantly 
related to change in content knowledge in one of the two 
models. Third, respondents who participated in another 
Bird Cams Lab investigation had self-reported improvement 
in science inquiry skills scores that were higher than 
those who had not. Participation in other investigations 
influencing self-perceived improvement in science inquiry 
supports the claim by Bonney et al. (2016) that gains in 
science inquiry skills require the opportunity for reflection 
on one’s role within the project and scientific process. If 
a participant was involved in another investigation, their 
exposure to the scientific process was greater.

LIMITATIONS AND FURTHER CONSIDERATIONS
While we successfully used a pre-post survey design to 
assess change in participant-level outcomes, and included 
a baseline group to compare against, there are still 
important limitations. First, our sample population was 
self-selected, biasing our sample toward those who are 
already interested in the research topic and/or scientific 
investigations, and who are willing to complete surveys. 
While having a baseline group helped mitigate this problem, 
we recommend future studies randomly assign participants 

to treatment groups (e.g., Greving et al. 2022) and analyze 
actual participation data (e.g., log files, Bruckermann et 
al. 2022) to establish causation as opposed to correlation. 
Second, we relied on quantitative survey measures, and 
potentially missed perceived changes detectable only via 
qualitative methods (Lynch et al. 2018) or unintended 
outcomes. Third, we created new questions and customized 
standardized scales, which means that our results are not 
directly comparable to other studies. We encourage future 
work to use validated, unmodified scales (e.g., Phillips, 
Porticella and Bonney 2017). Fourth, we assessed outcomes 
for participants engaged in one investigation. There were 
multiple Bird Cams Lab investigations, and 42% of survey 
respondents who completed both surveys engaged in 
another investigation (Table 2). Recent work suggests that 
multi-project participation is the norm (Allf et al. 2022), 
and project design, including the research topic, can 
influence learning (Peter et al. 2021b). Finally, we recognize 
that the degree to which participants are engaged in the 
scientific process is only one aspect of participation. Quality 
is another key aspect in understanding participation (Shirk 
et al. 2012) as well as the other dimensions of engagement 
that exist in PPSR programs (Bruckermann et al. 2022; 
Phillips et al. 2019).

With regards to our finding that data collection was 
associated with the greater increases in participants’ self-
efficacy and content knowledge, there are two important 
considerations: 1) Data collection was the phase in which 
most respondents who completed both surveys engaged 
(Table 2), and 2) some participants may not understand they 
can or may lack a desire to engage in phases outside of data 
collection. Regarding the first consideration, Bruckermann 
et al. (2022) also found that when participants were given 
the opportunity to engage in data collection and data 
analysis, data collection was the phase most participants 
engaged in. We do want to note, however, that data 
collection was not the most popular phase in all Bird Cams 
Lab investigations. Regarding the second consideration, 
when we invited the public to engage in the question design 
phase, several participants were confused about their role 
and asked where and when they could start collecting 
data. Participants’ confusion as to their role in the scientific 
investigation is not new (Evans et al. 2005) and could have 
influenced their participation. Alternatively, participants 
may be satisfied with their role as data collectors and 
the role of professional scientists in leading the research 
process (Phillips et al. 2019), or their perceived role as data 
collectors could prevent them from taking on roles beyond 
data collector (Bruckermann et al. 2022).

Because our findings are based on an investigation 
that was entirely online and centered on basic research, 
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we recommend that future research consider how the 
degree of participation relates to learning outcomes in the 
context of investigations in different settings and different 
research topics. We expect participant motivations to differ 
depending on the context, and motivations can influence 
learning (Haywood and Besley 2014; Phillips et al. 2019). 
Additionally, we recommend future research to consider 
other types of analyses, such as path analysis (Hiller 
and Kitsantas 2014), because some of the outcomes we 
measured may be influencing each other and participants’ 
learning potential. We hope that future work builds on this 
study’s findings so that practitioners have a clearer picture 
of how best to involve the public in scientific research in 
order to meet their educational goals.

CONCLUSION

Our research provides insights into how the degree of 
participation in the scientific process relates to individuals’ 
learning outcomes. In support of the hypothesis proposed 
by Bonney et al. (2009) and evidence found by Shirk et al. 
(2012), we found that the greater the degree of participation 
in the scientific process, the greater the changes in learning 
outcomes. However, perhaps more importantly, we found 
that even when we created opportunities for participants 
to engage in other stages of the scientific process, 
engagement in data collection was associated with greater 
gains in participants’ self-efficacy and content knowledge 
compared with other phases.

For programs with limited funding and resources that 
seek to influence participant-level outcomes, focusing 
efforts on data collection may be the most impactful on 
content knowledge and self-efficacy. Additionally, data 
collection may be the phase in which the public prefers to 
participate; of those who completed both surveys in our 
study and contributed to the investigation, most participants 
engaged in data collection. However, if programs seek to 
increase participants’ science inquiry skills, we recommend 
investing in a co-created or collaborative process in which 
participants can be a part of other activities in addition to 
data collection.

While our study was not experimental, we were able 
to measure changes in learning outcomes with a pre-
post survey design and compare these changes across 
varying degrees of participation, including no participation. 
Depending on which participant-level outcomes a PPSR 
program seeks to focus on and the resources available, 
creating opportunities for participants to engage in the 
scientific process outside of data collection may or may not 
be in their best interest.
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