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ABSTRACT
Citizen science (CS) is a growing field of participatory science, bringing together the public, 
researchers, organizations, and communities to participate in various scientific projects 
that unfold in different sociomaterial settings known as territories. While research 
on perceived learning in CS has recently grown, the discussion regarding the different 
learning approaches, territories, and the overall process as well as their associations with 
learning factors remains meager. In our study, we unpack three types of learning (formal, 
informal, and nonformal) and their respective territories in CS, and within this context, 
review a model of learning to synthesize the project-related and individual factors 
associated with the perceived learning of citizen scientists engaged in CS activities. We 
conducted an international survey for adults participating in CS, which was then analyzed 
using exploratory factor analysis (N = 596). We identified the following five factors 
regarding CS activities and perceived learning: sociomaterial learning, social learning, 
reflective learning, situational learning, and material learning. We found that perceived 
learning was lower for citizen scientists who participated in biology CS projects but higher 
among citizen scientists who participated in the long term and engaged in a variety of 
CS activities. Our findings highlight that the learning experiences of citizen scientists can 
be varied within a CS project because of the varied entanglements of project-related 
and individual factors, which can be better understood through a model of learning. Our 
findings contribute to developing further the theories and practices related to CS and CS 
in education.
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INTRODUCTION

Citizen science (CS) is a research area growing in interest 
because it is concerned with how certain scientific projects 
are undertaken by the public and professional scientists to 
increase overall scientific understanding (Eitzel et al. 2017; 
Herodotou et al. 2020). CS may be defined and characterized 
differently by its various stakeholders (e.g., organizations, 
associations, governments, enthusiast groups, individuals) 
depending on the degree of participation (i.e., frequency 
and duration) and the settings of CS (e.g., school, museum, 
home) (Kloetzer et al. 2021; Vasiliades et al. 2021). Research 
on learning often begins by looking at the content and 
design of projects as project participation entails different 
CS activities or tasks that are done independently and/or 
collaboratively by participants for the advancement of a 
project and/or personal gain such as making observations, 
collaborating with others, or discussing results (Kloetzer et 
al. 2021).

Researchers have noted that the learning experiences 
of citizen scientists may shape the overall longevity and 
fruitfulness of CS projects (e.g., Bruckermann et al. 2020; 
Peter et al. 2021; Roche et al. 2020; Vasiliades et al. 2021). 
To improve project sustainability while enhancing output at 
the project and individual levels, efforts have been made 
to investigate, for example, the demographics of citizen 
scientists (Herodotou et al. 2020; Pateman, Dyke and West 
2021; Vasiliades et al. 2021), individual learning outcomes 
(Kloetzer et al. 2021; Phillips et al. 2018; Vasiliades et al. 
2021), and the mediums (i.e., online/offline modes) that 
may support learning (Aristeidou and Herodotou 2020; 
Bruckermann et al. 2020). However, “research on learning 
in CS remains under-theori[z]ed” owing to the challenges 
associated with the creation and evaluation of learning, 
to the varying degrees of participation in CS projects, and 
because the paradigms used to examine learning are not 
explicated sufficiently (Bruckermann et al. 2020, p. 889).

Peter et al. (2021) have taken the initiative by 
investigating the relevance between project design and 
the acquisition of knowledge and skills of citizen scientists. 
Our aim is to continue this discourse with an emphasis 
on tackling the theoretical foundation of learning and the 
sociomaterial settings in CS as well as their relevance in 
understanding the factors for perceived learning. First, we 
review the different types of learning and their respective 
sociomaterial settings in CS before discussing the Model 
for the Design and Evaluation of Learning in CS or MODEL-
CS (Bruckermann et al. 2020). Then, we introduce how 
project-related and individual factors are associated with 
the perceived learning of citizen scientists engaged in CS 
activities. Finally, we elucidate these factors by referring to 
the MODEL-CS. 

CITIZEN SCIENCE, LEARNING, AND TERRITORIES
According to the Organisation for Economic Co-operation 
and Development or OECD (2020) and the European 
Centre for the Development of Vocational Training or 
Cedefop (2014), learning can be broadly divided into 
formal, informal, and nonformal learning. Formal learning 
refers to learning in an environment that is organized and 
structured such as a school. It includes learning objectives, 
learning materials (e.g., textbooks, iPads), and learning 
resources (e.g., teachers, a tutoring service) that have 
been allocated to support learning. Learning is intentional 
from the perspective of the learner, who usually receives 
certification upon completion such as a diploma. In 
contrast, informal learning is situational, or experience-
based, such as talking with co-workers at the workplace. 
Learners are not proactively thinking of their own learning 
in the same way as in formal learning; hence, it is usually 
unintentional. It does not include learning objectives, and 
learning materials are not allocated to learning. However, 
resources such as counseling (if provided) may contribute 
to learning. Informal learning may sometimes be certified, 
such as in the completion of a series of online quizzes on, 
for example, plant species (Cedefop 2014; OECD 2020). 

In between formal and informal learning is nonformal 
learning. Although its definition is debated, nonformal 
learning generally refers to a semi-structured or semi-
organized environment that supports learning, such as a 
museum. While learning is embedded in the environment, 
learning objectives are more implicit (i.e., available but 
not necessarily promoted), learning materials are present 
(e.g., booklets, diagrams), and learning resources (e.g., 
workshops) are available but more limited compared with 
formal learning. Learning is intentional, but it does not 
usually result in certification (Cedefop 2014; OECD 2020). 
Overall, much of our learning involves a mixture of informal 
and nonformal learning in addition to formal learning 
(National Research Council 2009).

As we can see, each type of learning involves a varied use 
of materials and resources in conjunction with opportunities 
for interaction (i.e., communication between people), 
which is known as sociomateriality (Orlikowski 2007). The 
types of learning and their sociomaterial counterpart in CS 
can be understood through the discussion of territories. 
According to Kloetzer et al. (2021), territories “indicate 
different sociomaterial contexts and resources, cultural and 
institutional values, and, sometimes, the various groups 
who may take part in citizen science projects (p. 286).” In 
other words, the territories for learning in CS are constructed 
through the varying combinations of project characteristics 
(e.g., values or aims, goals, the research area), individuals 
(e.g., citizen scientists, policymakers, project stakeholders), 
resources (e.g., training and support), and materials (e.g., 
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smartphones, sound recorders). Kloetzer et al. (2021) list 
six different territories about which we explain next in 
relation to the three types of learning. 

Formal learning primarily includes the formal education 
territory (i.e., schools). CS can occur in schools through its 
integration with curricula so that learning objectives are 
defined and learning materials as well as resources are 
provided. As students (who also act as citizen scientists) 
are already enrolled in the school, learning is intentional; 
however, it is not clear whether certification from the 
school includes a direct connection to CS because 
competing interests such as ensuring resources (e.g., 
lesson plans) are applicable to school curricula and CS 
activities. Informal learning primarily takes place within 
the family territory. Here, CS projects aim to encourage 
exploratory learning through interaction (e.g., discussion 
with others) in everyday situations without the need for 
acquiring or utilizing certain materials (e.g., measuring 
devices). Depending on the project, learning resources 
such as tutoring may be available. Learning itself is not 
proactively pursued nor established in this territory; 
hence, learning is meagerly perceived (Kloetzer et al. 
2021).

Nonformal learning takes place mainly in the territories 
of out-of-school education, museums, and local and global 
communities. Learning remains intentional for out-of-
school education programs and museums as both typically 
support learning through, for example, workshops or 
courses, which include hands-on materials such as a water 
sampling kit, even though specific learning objectives are 
not always explicit. Interestingly, some out-of-school 
education programs may allow citizen scientists to 
operate independently from professional scientists during 
participation while others include apprenticeship, which 
may pave the way for certification. 

For the local and global communities territory, CS 
projects are flexibly structured, and learning is part self-
directed and part collaborative. A community or out-of-
school program may provide the necessary materials (e.g., 
iPads) and resources (e.g., training) to learn, and some 
may directly collaborate with citizen scientists; however, 
sometimes the learning materials provided are not used for 
the learning that is intended. While certification for skills 
and knowledge obtained are not necessarily commonplace, 
dialogue between citizen scientists, the community, and 
project stakeholders may be enhanced and thus lay the 
foundation for future CS projects (Kloetzer et al. 2021). 
Overall, CS project initiators seem to find a stronger 
launchpad in this territory since learning is not compelled, 
and scientific literacy is not explicitly emphasized as the 
primary goal or purpose (National Research Council 2009).

The online territory is more difficult to categorize as 
it includes characteristics from formal, informal, and 
nonformal learning. Online CS projects such as Grass Gazers 
may serve as a substitute for when in-class, formal learning 
is not possible because of, for example, the outbreak of a 
disease (see Van Haeften et al. 2021). Online CS projects 
may also provide online materials (e.g., e-books, videos) 
for self-study as well as resources (e.g., forums, webinars) 
that allow citizen scientists to connect with other citizen 
scientists, researchers, policymakers, teachers, and formal 
education providers such as universities (Aristeidou and 
Herodotou 2020; Bruckermann et al. 2020; Kloetzer et al. 
2021; Roche et al. 2020). Learning can be intentional when 
enrolling in substitute study programs such as Grass Gazers 
or unintentional when troubleshooting technical issues 
during, e.g., data collection (Kloetzer et al. 2021). 

Citizen scientists in the online territory are typically 
self-directed, whether learning objectives are explicitly 
present or not (Aristeidou and Herodotou 2020), reflecting 
a more constructivist approach to learning, in which 
learners autonomously manage their own learning (Packer 
and Goicoechea 2000). Like the family territory, when 
learning is not perceived, participation is difficult to sustain 
(Kloetzer et al. 2021). Learning in online CS is not typically 
certified, but there have been efforts to address this such 
as the European Guidelines for Validating Non-Formal and 
Informal Learning (Cedefop 2016) or the Informal Learning 
in Citizen Science (ILICS) model by Kloetzer et al. (2013) as 
mentioned by Aristeidou and Herodotou (2020, p. 2).

A MODEL FOR INTERPRETING THE PROCESS OF 
LEARNING IN CITIZEN SCIENCE
Recently, researchers have developed different models to 
better capture and understand learning in CS. For instance, 
Phillips et al. (2018) developed a framework to capture 
and evaluate perceived learning through six categories: 
“interest, self-efficacy, motivation content, process and 
nature of science knowledge, skills of science inquiry, and 
behavior and stewardship (p. 7).” Kloetzer et al. (2021) 
took a different approach and created a comprehensive 
“thematic map of volunteers’ learning” in CS by combining 
prior research from Citizen Cyberlab (Jennett et al. 2016) to 
focus on how and what is learned as well as the barriers 
for learning (p. 300). Bruckermann et al. (2020) note that 
project initiators typically do not focus on the design and 
evaluation of learning and thus developed the Model for the 
Design and Evaluation of Learning in CS projects or MODEL-
CS. The model functions as a heuristic tool for analyzing CS 
projects and learning through identifying and connecting 
the stages of a project: inputs, CS activities, outputs, and 
outcomes.
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At the input stage of a project, professional scientists 
form learning opportunities based on their goals and 
motivation as well as those of citizen scientists. Next, 
citizen scientists utilize the learning opportunities by 
engaging in one or more CS activities. Sufficient use of 
CS activities via participation generates measurable and 
observable outputs for professional scientists to examine. 
Finally, outputs are then transformed into scientific 
outcomes or individual learning outcomes (which we refer 
to as perceived learning), which may (not) correspond with 
one another. However, it is important to note that the 
outcomes at the end of a project feedback to professional 
scientists and citizen scientists and thus shape their current 
and even future goals and motivations for other projects 
(Bruckermann et al. 2020, p. 890). 

RESEARCH QUESTIONS
In this study, we investigate the following research 
questions: 

1. What kind of project-related and individual factors can 
be identified?

2. How are the project-related and individual factors 
associated with the perceived learning of citizen 
scientists engaged in CS activities?

DATA AND METHODS

OVERVIEW
Our study is based on a survey (see Supplemental File 1: 
Survey instrument, for relevant survey questions) that 
addressed adult citizen scientists (over the age of 16) in 
Europe. An adaptation of Lohman’s (2005) informal learning 
survey and research conducted by Jennett et al. (2016) 
about learning in CS were used as the basis for creating 
answer choices. We define citizen scientist as any person 
who has participated in scientific projects in collaboration 
with professional scientists by voluntarily, contributing to, 
for example, data collection, analysis, and/or dissemination 
of a scientific project or observational campaign, even if the 
term CS was not explicitly used (Haklay 2013). During its 
development, we piloted the survey with 11 citizen scientists 
who provided feedback. Overall, our survey focused on 
Europe because it was created within the context of the EU 
Horizon 2020 CS Track project.

DISSEMINATION AND APPROACH
The survey (available in 10 languages) was disseminated 
systematically in Europe via universities and other research 
institutions, environmental organizations, civil societies, 

policy makers, volunteering organizations, etc. from 
January 2021 until July 2021. We also sent direct emails 
to projects and institutes conducting CS, inviting them to 
respond to the survey and/or distribute it throughout their 
networks; hence, principles of snowball sampling were used 
(see Goodman 1961). The survey was promoted on social 
media channels and CS-related forums. We also asked the 
platforms of national and international CS associations 
for support and promotion of the survey. Throughout 
the survey dissemination, we were actively searching 
for best practices of similar survey distribution strategies 
(e.g., Ganzevoort and Van den Born 2020). We also sent 
follow-up emails and reminders to encourage more citizen 
scientists to answer.

Altogether, we focused on 11 CS activities (e.g., asking 
questions, searching information from the internet, trial 
and error) and their relationship with one another. We 
then examined the following project-related factors: 
initiators, research areas, and goals. For individual factors, 
we examined participation in CS (in years), regularity of 
participation, number of projects in which respondents 
participated, and CS activities in which respondents were 
engaged in learning. Regarding the project-related factors, 
it was possible to choose more than one option (i.e., one CS 
project could relate to many research areas).

SAMPLE CHARACTERISTICS OF SURVEY 
RESPONDENTS
A total of 1,083 respondents from 38 countries and 5 
continents responded to the survey. To detect possible 
attrition bias, a logistic regression was implemented using 
the following demographic characteristics obtained from 
our survey: gender, age, education level, yearly income 
level, and participation in CS (in years) (see Supplemental 
File 2: Survey data, Tables A1 and A2). We found that 
respondents who had been engaged in CS from 6 to 10 
years (p < 0.04) or for more than 10 years (p < 0.001) as well 
as those who identified themselves as male (p < 0.03) were 
more likely to respond. Those who had a post-secondary 
non-tertiary education (p < 0.04) were less likely to respond. 
However, according to the Wald Chi-Squared test, the only 
demographic characteristic that was significant was how 
long the respondent had engaged in CS (X2 = 26.0 df = 3, p 
< 0.001). The data analysis for the subsample was based 
on data with no missing values in considered CS activities 
(N = 596).

DATA ANALYSIS
Regarding relevant CS activities, we referred to those from 
the survey question: “In your experience, to what extent 
do you feel you have learned something while doing the 
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following activities?” (see Survey instrument, item 21). This 
Likert-based question listed values from one (not at all) 
to five (a great deal). The value of six meant that the CS 
activity was not relevant or possible in the project and was 
thus considered as missing information. Exploratory factor 
analysis (EFA) was conducted to determine the relationship 
and correlation between CS activities as well as to reduce 
the dimension of response variables. The answer choice 
of “Other, please specify” covers multiple different CS 
activities and was also excluded from EFA. 

Our subsample size of N = 596 is suitable for factor 
analysis (Guadagnoli and Velicer 1988). The univariate 
and multivariate normality within the data set was 
examined before initiating EFA. Since the data set cannot 
be considered normally distributed (see Survey data, 
Table A3), EFA was initiated using Spearman’s rank 
correlation (see Survey data, Table A4). The suitability 
of the data set was examined using Kaiser-Meyer-Olkin 
criterion (Kaiser and Rice 1974). A value close to one 
indicates high suitability for factor analysis and our value 
is 0.91.

Figure 1 represents a scree plot of eigenvalues that can 
be used to determine the extraction of factors (Cattell 
1966). The curve drops after the first factor, with another, 
smaller drop after the fifth factor.

Another criterion for factor extraction is discovering 
the cumulative percentage of the variance explained. 
Depending on the discipline, the factors with cumulative 
percentage from 60 to 80 of the total variances explained 
are considered usable (Hair et al. 2010, Streiner 1994). 
In this study, 75% of the total variances were explained 
after determining five factors. Table 1 shows all the factor 
components that are extracted. 

Factors were not statistically significantly correlated 
(see Survey data, Table A5), so the loadings of factors 
were rotated using the Varimax rotation (Kaiser 1958). In 
this study, the component loadings of 0.35 or higher are 
included when interpreting the factors. The communality 
(h2) provides the percent of variance in a variable explained 
by all common factors. The original CS activities from the 
survey, rotated factor loadings, and the communalities 
are presented in Table 2 below. Based on the factor 
loadings and the earlier discussion on territories (Kloetzer 
et al. 2021), which is based on sociomateriality (Orlikowski 
2007), factor 1 was named sociomaterial learning, factor 2 
was named social learning, factor 3 was named reflective 
learning, factor 4 was named situational learning, and 
factor 5 was named material learning. 

Factor scores were then determined by calculating 
the matrix production of the factor loading presented in 
Table 2 and observations were centered. The factor scores 
were not normally distributed (Shapiro-Wilk normality test: 
Factor 1 scores W = 0.96, p < 0.001; Factor 2 scores W = 
0.96, p < 0.001; Factor 3 scores W = 0.95, p < 0.001; Factor 
4 scores W = 0.97, p < 0.001; Factor 5 scores W = 0.95, 
p < 0.001). We used the non-parametric Kruskal-Wallis 
test to compare the factor scores between the different 
groups. We calculated the eta-squared measure (Tomczak 
and Tomczak 2014) as an effect size for the Kruskal-Wallis 
test and interpreted it with the thresholds 0.01, 0.06, and 
0.14 for small, medium, and large effects respectively 
(Morse 1999). Initial to the comparisons, we grouped the 
data based on the project-related factors (e.g., research 
area of the project) and individual factors (e.g., number of 
participated projects). The Dunn’s A test (1961) was used 
for pairwise comparisons (see Survey data, Table A6). A 

Figure 1 Scree plot of eigenvalues.
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p-value of less than 0.05 was considered as the limit for a 
statistically significant result. 

Since it was possible to select more than one initiator, 
research area, or goal for a project in the survey (see Survey 
instrument, items 12, 13, and 14), respondents were first 
manually grouped based on the project’s research area 
so that each project, along with their initiator and goal, 
belonged to one of four project groups: biology, history, 
other natural sciences, and other research areas. 

Next, respondents were clustered using K-modes 
clustering (Chaturvedi, Green, and Caroll 2001) based 
on individual factors related to experience in CS (i.e., 
participation in years, regularity of participation, number 
of projects in which respondents participated, and CS 
activities in which respondents were engaged in learning). 
The number of clusters was selected using the elbow 
method, in which you identify the point where eigenvalues 
level off. Since the procedure can yield results in locally 

COMPONENT INITIAL 
EIGENVALUES

EXTRACTION SUMS  
OF SQUARED LOADINGS

ROTATION SUMS OF SQUARED LOADINGS

TOTAL % OF 
VARIANCE

CUMULATIVE % TOTAL % OF 
VARIANCE

CUMULATIVE % TOTAL % OF 
VARIANCE

CUMULATIVE %

1 5.35 48.6 48.6 3.57 32.4 32.4 1.63 14.8 14.8

2 0.95 8.7 57.3 1.90 17.3 49.7 1.47 13.4 28.2

3 0.86 7.8 65.1 0.49 4.5 54.2 1.28 11.6 39.8

4 0.77 7.0 72.0 0.44 4.0 58.2 1.27 11.5 51.3

5 0.60 5.4 77.5 0.35 3.1 61.3 1.10 10.0 61.3

Table 1 Extracted factor components.

Extraction method: Maximum likelihood estimation.

Rotation method: Varimax.

VARIABLE (CS ACTIVITY) FACTOR 1
(SOCIOMATERIAL 
LEARNING)

FACTOR 2
(SOCIAL 
LEARNING)

FACTOR 3
(REFLECTIVE 
LEARNING)

FACTOR 4
(SITUATIONAL 
LEARNING)

FACTOR 5
(MATERIAL 
LEARNING)

h2

Talking and interacting with others (face 
to face or in online communities)

0.67 0.67

Observing others 0.72 0.69

Searching information from the internet 0.40 0.39

Trial and error 0.68 0.58

Reflecting on your previous knowledge or 
actions

0.56 0.35 0.54

Reading professional magazines and 
journals

0.72 0.65

Asking questions 0.46 0.52

Attending a training program or studying 
the material provided by the project 
(guides, manuals, etc.)

0.39 0.42

Sharing materials and resources with 
others

0.41 0.83 1.00

Collaborating with others to do tasks 0.74 0.77

Creating something new (e.g., innovations, 
art)

0.61 0.52

Table 2 Varimax-rotated factor scores using Spearman correlation matrix.

Note: Factor loadings <.35 are suppressed.
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optimal solutions (Chaturvedi, Green, and Caroll 2001), we 
repeated it 200 times to obtain stable clustering.

RESULTS

PROJECT-RELATED AND INDIVIDUAL FACTORS: 
GROUPS AND CLUSTERS
Concerning the first research question (What kind of 
project-related and individual factors can be identified?), 
we first manually grouped the respondents based on 
project-related factors and then clustered respondents 
based on individual factors. Table 3 presents the project 
groups and project initiators, in which the project groups are 
listed vertically (e.g., biology, history, etc.) and the project 
initiators are listed horizontally (e.g., an association/a non-
governmental agency, scientific institution, etc.).

Next, Table 4 presents the project groups and project 
goals. Like Table 3, the project groups are listed vertically 
(e.g., biology, history, etc.) and the project goals are listed 
horizontally (e.g., data/research, education/outreach, etc.). 

Regarding participation clusters, we found a four-cluster 
K-modes solution (Table 5). The descriptive statistics 
of participation clusters is presented in Table A7 in the 
Survey data. The four clusters are listed vertically and 
their corresponding participation characteristics (e.g., 

participation in CS (years), regularity of participation, etc.) 
are listed horizontally.

PROJECT-RELATED AND INDIVIDUAL FACTORS 
ASSOCIATED WITH PERCEIVED LEARNING
For our second research question (How are the project-
related and individual factors associated with the perceived 
learning of citizen scientists engaged in CS activities?), we 
addressed how the project groups and participation clusters 
were associated with perceived learning in CS activities. 
First, we examined the learning factor scores between the 
project groups (Table 6). 

The highest median in sociomaterial learning was in the 
other research areas group (median = 1.24). The history 
(0.76) and other natural sciences groups (0.43) had positive 
median scores, indicating an above-average perceived 
learning. The sociomaterial learning score median was 
negative within the biology group (–0.54), indicating a 
below average perceived learning. The differences between 
the groups were statistically significant (Kruskal-Wallis test, 
Table 6), yet the effect size was small (eta squared = 0.05). 
A Dunn’s test (1961) for paired comparisons revealed that 
the most significant differences were between biology and 
other research areas groups (Z = –4.79, Holm-adjusted p 
< 0.001), and between the biology and history groups (Z = 
–3.97, Holm-adjusted p < 0.001).

PROJECT GROUP/
INITIATOR

AN ASSOCIATION/A 
NON-GOVERNMENTAL 
AGENCY

SCIENTIFIC 
INSTITUTION

GOVERNMENTAL 
AGENCY

INDIVIDUAL 
OR GROUP OF 
INDIVIDUALS

OTHER INITIATORS (E.G., 
OTHER INSTITUTION, 
BUSINESS, MEDIA)

Biology 127 (44%) 119 (42%) 32 (11%) 27 (9%) 27 (9%)

History 36 (38%) 13 (14%) 9 (9%) 40 (42%) 27 (27%)

Other natural 
sciences

24 (38%) 21 (33%) 1 (2%) 15 (24%) 6 (10%)

Other research 
areas

21 (28%) 31 (41%) 8 (11%) 12 (16%) 17 (23%)

Table 3 Project groups and initiators (% of projects in group).

Note: Respondents may have selected multiple project initiators; hence, the percentages do not add up to a 100%.

PROJECT GROUP/GOAL 
OF THE PROJECT

DATA/RESEARCH EDUCATION/
OUTREACH

DEVELOPMENT/
INNOVATION

POLICY INITIATIVES/
POLITICAL DECISION-
MAKING

OTHER

Biology 197 (90%) 62 (28%) 15 (7%) 14 (6%) 5 (2%)

History 67 (80%) 31 (37%) 7 (8%) 4 (5%) 3 (4%)

Other natural sciences 38 (75%) 18 (35%) 2 (4%) 1 (2%) 1 (2%)

Other research areas 36 (60%) 30 (50%) 16 (27%) 19 (32%) 3 (5%)

Table 4 Project groups and goals (% of projects in group).

Note: Respondents may have selected multiple project goals; hence, the percentages do not add up to a 100%.
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Social learning score medians were very similar within 
project groups (Biology, median = 0.41, history, median = 
0.41, other research areas, median = 0.41, other natural 
sciences, median = 0.36). The Kruskal-Wallis test did not 
indicate differences between project groups (Table 6) and 
the effect size was small (eta squared = 0.008).

Reflective learning scores were similar within the 
other natural sciences group (median = 0.45), the other 
research areas group (median = 0.45), and the history 
group (median = 0.39). Like the sociomaterial learning 
score, the reflective learning score median was below zero 
in the biology group (–0.23). This indicates that perceived 
reflective learning is below average in this group. According 
to the Kruskal-Wallis test, the differences between project 
groups were statistically significant (Table 6), but the effect 
size was small (eta squared = 0.01). Pairwise comparisons 
with Dunn’s tests (1961) revealed that the statistically 
significant difference was between the biology and other 
natural sciences groups (Z = –2.77, Holm-adjusted p = 0.03).

The situational learning medians were quite similar 
within project groups (History, median = 0.53, other research 
areas, median = 0.12, biology, median = 0.05, other natural 
sciences, median = 0.04). According to the Kruskal-Wallis 
test, the differences in situational learning scores were not 
statistically significantly different within project groups 
(Table 6) and the effect size was small (eta squared = 0.007).

Looking at the perceived learning for material learning, 
the groups other research areas (median = 0.38), history 
(0.33) and other natural sciences (0.24) had similar 
medians. The biology group is the only group presented 
with a negative median (–0.27), indicating a below average 
perceived learning for material learning. The differences 
were statistically significant (Table 6), but the effect size 
was small (eta squared = 0.03). According to Dunn’s 
test (1961), the statistically significant differences were 
between the biology and history groups (Z = –3.35, Holm-
adjusted P = 0.004), and between the biology and other 
research areas groups (Z = –3.69, Holm-adjusted P = 0.001).

CLUSTER N PARTICIPATION IN CS 
(YEARS)

REGULARITY OF 
PARTICIPATION

NUMBER OF 
PARTICIPATED 
PROJECTS

ENGAGED CS ACTIVITIES 

1 183 10+ Weekly 2–5 Data collection
Discussing results
Disseminating results
Public outreach for the project

2 200 10+ Weekly 2–5 All CS activities* except providing 
resources

3 79 10+ Weekly 10+ projects All CS activities*

4 134 2–5 Once every few months Just one Data collection

Table 5 A four-cluster K-modes solution.

* The relevant CS activities are listed in under item 18 (Survey instrument).

PROJECT GROUP/
FACTOR

BIOLOGY HISTORY OTHER NATURAL 
SCIENCES

OTHER RESEARCH 
AREAS

KRUSKAL-WALLIS 
TEST p-VALUE (CHI 
SQUARED, df = 3)

FACTOR SCORE MEDIAN (INTERQUARTILE RANGE)

Sociomaterial 
learning

–0.54  
(–2.47, 1.24)

0.76  
(–1.01, 2.16)

0.43  
(–1.06, 1.98)

1.24  
(–0.60, 2.60)

<0.001* 
(33.21)

Social learning 0.41  
(–1.03, 1.08)

0.41
(–0.98, 1.08)

0.36
(–0.98, 1.79)

0.41
(–0.31, 1.79)

0.054 
(7.63)

Reflective learning –0.23
(–0.91, 0.57)

0.39
(–0.19, 1.01)

0.45
(–0.79, 1.13)

0.45
(–0.79, 1.13)

0.01* 
(11.13)

Situational learning 0.05
(–1.40, 1.13)

0.53
(–0.65, 1.55)

0.04
(–0.71, 1.41)

0.12
(–1.16, 1.91)

0.06 
(7.30)

Material learning –0.27
(–1.33, 0.70)

0.33
(–0.50, 1.09)

0.24
(–0.50, 0.80)

0.38
(–0.50, 1.90)

<0.001* 
(20.66)

Table 6 Perceived learning scores in project groups.

* Differences between groups are statistically significant.
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Next, we examined the perceived learning score medians 
in participation clusters (Table 7).

The results in Table 7 indicate that diverse participation 
in CS activities was associated with higher scores in 
sociomaterial learning, since clusters two and three have 
the highest medians (1.24, 2.03). In these clusters, citizen 
scientists participated in CS often and diversely (see Survey 
data, Table A7). According to the Kruskal-Wallis test, the 
differences between clusters were statistically significant 
(Table 7) and the effect was large (eta squared = 0.21). 
Further examinations reveal that differences were statistically 
significant between all the clusters except between clusters 
one and four, which had the lowest score medians in 
sociomaterial learning (see Survey data, Table A6).

Similar observations can be seen in other learning factors. 
For all factors, the third cluster of citizen scientists with long 
experience in CS, and who participated frequently in multiple 
CS projects, had the highest perceived learning (social learning 
median = 1.08, reflective learning median = 1.01, situational 
learning median = 1.10, material learning median = 0.70). 
Correspondingly, perceived learning was lower in the clusters 
that had fewer participated CS projects and a few engaged 
CS activities. For all factors, the effect size was either medium 
or large (social learning, eta squared = 0.14; reflective 
learning, eta squared = 0.10; situational learning, eta squared 
= 0.14; material learning, eta squared = 0.13). The pairwise 
differences between factors are statistically significant in all 
comparisons except between clusters two and three (see 
Survey data, Table A6). When comparing scores for material 
learning, the difference between the first and the fourth 
participation clusters is not statistically significant.

DISCUSSION

Our aim was to understand project-related and individual 
factors so that we could investigate how they are 

associated with the perceived learning of citizen scientists 
engaged in CS activities. We initially focused on the 
relationship between 11 different CS activities for perceived 
learning and were able to identify the following five factors: 
sociomaterial learning, social learning, reflective learning, 
situational learning, and material learning. These factors 
highlight the different relationships that exist between CS 
activities and perceived learning. In sociomaterial learning 
(factor 1), citizen scientists perceived learning through 
sociomateriality, i.e., when interacting with others to 
perform group work or inquiry in combination with creating 
and distributing material or resources. In social learning 
(factor 2), citizen scientists perceived learning primarily 
through social interaction that involved observation of and 
discussion with others. In contrast, in reflective learning 
(factor 3), citizen scientists perceived learning through the 
self by means of personal reflection and experimentation. 
Next, in situational learning (factor 4), citizen scientists 
perceived learning through the sociomaterial combination 
of unstructured situations (e.g., reading magazines, 
searching for information on the internet) and structured 
situations (e.g., attending a training session). Finally, in 
material learning (factor 5), citizen scientists perceived 
learning through the distribution of materials and resources 
to others.

Project-related factors were manually grouped based on 
research area, which included their corresponding initiator 
and goal. We found that perceived learning was lower for 
citizen scientists who participated in biology CS projects, 
especially regarding sociomaterial learning, reflective 
learning, and material learning, and the difference with 
other projects, initially, seemed to be significant. However, 
the effect size was small, which means it is difficult to say 
to what degree biology CS projects in our survey lacked 
CS activities that were sociomaterial-based (e.g., group 
work along with sharing resources), self-directed (e.g., trial 
and error), or material-based (e.g., sharing materials). In 

PARTICIPATION 
CLUSTER / FACTOR

1 2 3 4 KRUSKAL-WALLIS TEST p-VALUE 
(CHI-SQUARED, df = 3)

FACTOR SCORE MEDIAN (INTERQUARTILE RANGE)

Sociomaterial 
learning

–0.89
(–2.46, 1.02)

1.24  
(–0.26, 2.31)

2.03
(0.46, 3.46)

–0.85  
(–3.16, 0.63)

<0.001* 
(127.31)

Social learning –0.26
(–1.08, 1.08)

0.41 
(–0.31, 1.79)

1.08  
(0.41, 1.79)

–0.95  
(–2.17, 0.41)

<0.001* 
(86.15)

Reflective learning –0.23
(–0.91, 0.51)

0.45  
(0.26, 1.13)

1.01  
(–0.23, 1.69)

–0.67  
(–1.47, 0.45)

<0.001*  
(63.46)

Situational learning –0.23
(–1.39, 0.87)

0.81  
(–0.29, 1.62)

1.10  
(0.03, 1.91)

–1.05  
(–2.86, 0.09)

<0.001* 
(83.13)

Material learning –0.40
(–1.33, 0.70)

0.70  
(–0.43, 1.53)

0.70  
(–0.13, 1.90)

–0.50  
(–1.77, 0.33)

<0.001* 
(80.93)

Table 7 Perceived learning score medians in participation clusters.

* Differences between clusters are statistically significant.
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a similar study, Peter et al. (2021) found that the training 
offered to citizen scientists in biodiversity CS projects does 
not typically incorporate enough opportunities for practice 
or reflection. Also, most citizen scientists collected data 
alone, and collaborative work, such as material sharing or 
group work, was uncommon (Peter et al. 2021). In their 
systematic study of environmental and nature-based CS 
projects, Vasiliades et al. (2021) found that 80% of citizen 
scientists primarily engaged in data collection that did not 
require “physical or intellectual effort” and that project 
leaders mainly focused on discussing the project data 
when communicating with citizen scientists (p. 10). 

However, perceived learning for citizen scientists who 
participated in biology CS projects seemed to be on par 
with other CS projects regarding social learning, and then 
similar to other CS projects regarding situational learning. 
While this suggests that CS activities for social interaction 
(e.g., talking with others) as well as structured situations 
(e.g., attending a training session) and unstructured 
situations (e.g., searching for information on the internet) 
are present, it is important to note that the effect size was, 
yet again, small. Regarding biology CS projects, Peter et al. 
(2021) also found that perceived learning was positively 
associated when citizen scientists could interact with other 
citizen scientists, project staff, and professional scientists, 
receive information regarding the project, attend training, 
and receive feedback or recognition for their participation. 
Vasiliades et al. (2021) discovered that “aspects related 
to training and recruiting” were the next two frequent 
topics in communication within projects (p. 10), and that 
the primary science goal of projects was to provide citizen 
scientists with an “understanding of scientific content and 
knowledge” (p. 9). Interestingly, although it was possible 
to select multiple project goals in our survey, we noticed 
that the most common goal indicated by citizen scientists 
for biology CS projects was data or research, which may 
suggest that the scientific component of a project (e.g., 
data collection and analysis) takes precedence over 
education. Comprehensive training sessions that include 
clear learning goals and equip citizen scientists with 
the necessary knowledge or tools for tackling potential 
epistemological and ethical challenges arising during 
participation can promote the sustainability and thus 
eventual completion of CS projects (Roche et al. 2020; 
Vallabh et al. 2016).

Regarding individual factors, they were clustered based 
on participation in CS (in years), regularity of participation, 
number of projects in which citizen scientists participated, 
and CS activities in which citizen scientists were engaged in 
learning. We found that citizen scientists who engaged in a 
variety of CS activities perceived greater learning regarding 
sociomaterial learning. We also noticed that citizen 

scientists who participated in CS for a longer duration (i.e., 
10 or more years) and engaged in a variety of CS activities 
had the highest perceived learning. On the one hand, prior 
experience such as education may be relevant as it can 
enhance the ability to, for example, search for information 
on the internet and read professional literature, leading to 
an increase in perceived learning during these CS activities. 
While researchers disagree on the demographics of citizen 
scientists (e.g., Hart et al. 2022), it has been found that 
training and similar support is crucial for citizen scientists 
who have a lower secondary education background 
(Bruckermann et al. 2020; Roche et al. 2020). 

On the other hand, while exploring motivation is a 
challenging topic in CS research, CS shares similarities 
with volunteerism, which Finkelstien (2009) argues to 
be intrinsic. As citizen scientists continue to participate 
in CS projects, their motivation tends to shift over time 
from egoism (extrinsic) to collectivism (intrinsic) (Land-
Zandstra et al. 2021). Smith et al. (2021) underscore that 
citizen scientists “with intrinsic motivations have greater 
participation frequency and duration” in CS projects (p. 14). 
Data collection is often the primary role of citizen scientists, 
and in fields such as biology, it is commonly done alone, 
even though citizen scientists have other important 
personal motivations such as contribution to science 
and/or society, social engagement, personal rewards, or 
growth. Some citizen scientists may be motivated to begin 
or continue their participation because they have identified 
a connection between the project’s characteristics and 
their own identity and values (Roche et al. 2020; Vasiliades 
et al. 2021; West, Dyke, and Pateman 2021). To better 
understand the connection between the project and citizen 
scientists, we turn to the MODEL-CS.

The MODEL-CS underscores how the goals and 
motivations of professional scientists and citizen scientists 
converge during the foundation of a project. However, at 
the end of the project, they are likely to diverge as citizen 
scientists and professional scientists focus on the relevant 
outcomes, which may affirm or alter future goals and/or 
motivation. In addition, the roles of professional scientists 
and citizen scientists shift as the project unfolds. While 
professional scientists offer certain learning opportunities, 
it is the citizen scientists who provide the input or labor 
through engaging in various CS activities. However, CS 
activities can occur in different territories and thus have 
their own affordances and limitations for perceived learning 
through, for example, the allocation of resources and 
materials, the explication of learning goals, instructions, 
and feedback, or the infrastructure for supporting 
collaboration (Bruckermann et al. 2020).

According to Vasiliades et al. (2021), nearly half (48%) 
of environmental and nature-based CS projects were 



11Peltoniemi et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.485

launched in local communities (p. 8). As explained earlier, 
since learning is usually semi-structured in this territory, CS 
projects do not always make learning goals explicit, supply 
learning materials and resources, or provide recognition, 
even though citizen scientists participate to learn in 
addition to their other goals and motivations such as 
taking practical actions in solving local issues (Roche et al. 
2020; West, Dyke, and Pateman 2021). This may generate 
a conflict of interest as discussed by Roche et al. (2020) and 
thus discourage participation. There were citizen scientists 
from our survey who strongly perceived learning through 
participating long-term and frequently in different projects 
and thus had engaged in a variety of CS activities. Stepping 
into different territories may allow citizen scientists 
to supplement any previous gaps experienced on, for 
example, learning, as well as to discover CS projects that 
are more personally relevant.

It is important to note that there were magnitude 
differences between the effect sizes for project-related 
and individual factors. Overall, the effect size for individual 
factors was larger than for project-related factors, 
suggesting that the characteristics of citizen scientists 
may be more important regarding differences in perceived 
learning than the characteristics of projects. To better grasp 
the characteristics of citizen scientists and, potentially, 
address issues regarding, for example, training, experience, 
or recognition, project initiators could consider the idea of 
accreditation, or the systematizing of skills, competences, 
and experiences (West and Pateman 2016). The research 
by Herodotou et al. (2020) and the online CS platform 
SciStarter (https://scistarter.org/) may provide possible 
approaches in developing accreditive practices.

In their analysis of young citizen scientists (ages 16 to 19 
years old) participating in Zooniverse projects, Herodotou 
et al. (2020) generated five engagement profiles, which 
revealed the degree of engagement and contribution to 
a project as well as project preference. Next, SciStarter 
hosts training modules that address not only general 
knowledge of citizen science, but also the topics related 
to projects. Citizen scientists can improve or review their 
understanding as well as earn badges that can be linked to 
their profile through completing modules. Project initiators 
on SciStarter can discern certain skillsets or knowledge by 
badge type and experience through badge variety. On the 
one hand, the creation of profiles may enable an organized 
understanding on the behavior of citizen scientists, which 
could be used to address issues relating to participation 
frequency and activity preference. On the other hand, the 
learning modules and badges on SciStarter could represent 
a potential method for tackling issues relating to training 
and recognition.

LIMITATIONS

Regarding limitations in our research data, the survey was 
disseminated via public social media campaigns, projects 
that could be on the internet, and direct personal contact. 
The use of snowball sampling (Goodman 1961) may have 
influenced the structure of the survey data. Therefore, there 
may have been CS projects unknown to researchers and 
thus excluded from receiving the survey. Finally, the size and 
visibility of a CS project may have affected its accessibility.

Additionally, many citizen scientists do not identify 
themselves as such (Haklay 2013), and it should be 
acknowledged that some audiences might find the term 
“citizen” problematic and want to avoid it altogether 
(Eitzel et al. 2017). Instead, many citizen scientists identify 
themselves as volunteers or hobbyists. Although we 
provided a popularized description of citizen scientists’ CS 
activities, some may have felt that they did not belong to 
the target group. 

Furthermore, the survey was not uniformly distributed 
across the world. There was an uneven distribution as 89% 
of respondents are European. The effects of the skewed 
geographical nature of the survey data will be further 
examined in future publications. In addition, a dropout 
analysis revealed that more experienced citizen scientists 
were more likely to complete the survey, which means 
there is likely an attrition bias in our subsample. Despite 
these limitations, our study sheds more light on the current 
practices of CS. Even though there are studies on learning in 
CS, many of them focus on learning within individual projects 
and/or disciplines. Our study addresses the European-level 
challenge to observe and analyze the current state-of-art 
across various projects and disciplines, and we were able to 
reach a large group of active citizen scientists who were able 
to provide insights on learning in CS activities.

CONCLUSION

In our study, we discussed how CS occurs in different 
sociomaterial settings known as territories, which entail 
formal, informal, or nonformal learning, and we reviewed 
a model for learning to identify and investigate the project-
related and individual factors associated with the perceived 
learning of citizen scientists engaged in CS activities. While 
each CS activity may foster learning, when considering 
the relationship of those listed in our survey using EFA, 
sociomaterial learning, social learning, reflective learning, 
situational learning, and material learning emerge. We 
found that the differences and similarities in perceived 
learning regarding sociomaterial learning, social learning, 

https://scistarter.org/
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reflective learning, situational learning, and material 
learning may relate to the research area of a CS project 
(e.g., biology), or the citizen scientist’s experience in CS 
(i.e., participation in CS (in years), regularity of participation, 
number of projects in which citizen scientists participated, 
and CS activities in which citizen scientists were engaged 
in learning). When considering effect sizes, it seems that 
individual characteristics relating to experience in CS 
are more significant to perceived learning than project 
characteristics such as research area, but this finding could 
have been partly related to the subsample used in this 
study. Overall, our study builds on the work by Peter et al. 
(2021) through the incorporation of the MODEL-CS, which 
allowed us to not only unravel the intertwined relationship 
between project-related and individual factors, but also 
highlight the overall cycle of learning for citizen scientists.
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