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ABSTRACT
Citizen science schemes enable ecological data collection over very large spatial and 
temporal scales, producing datasets of high value for both pure and applied research. 
However, the accuracy of citizen science data is often questioned, owing to issues 
surrounding data quality and verification, the process by which records are checked after 
submission for correctness. Verification is a critical process for ensuring data quality and for 
increasing trust in such datasets, but verification approaches vary considerably between 
schemes. Here, we systematically review approaches to verification across ecological 
citizen science schemes that feature in published research, aiming to identify the options 
available for verification, and to examine factors that influence the approaches used. We 
reviewed 259 schemes and were able to locate verification information for 142 of those. 
Expert verification was most widely used, especially among longer-running schemes, 
followed by community consensus and automated approaches. Expert verification has 
been the default approach for schemes in the past, but as the volume of data collected 
through citizen science schemes grows and the potential of automated approaches 
develops, many schemes might be able to implement approaches that verify data more 
efficiently. We present an idealised system for data verification, identifying schemes 
where this system could be applied and the requirements for implementation. We 
propose a hierarchical approach in which the bulk of records are verified by automation 
or community consensus, and any flagged records can then undergo additional levels of 
verification by experts.
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INTRODUCTION

In the current polarised political and media environment 
(Iyengar and Massey 2019), with public access to a vast 
choice of information sources (Huber et al. 2019), there 
is an increasing need for effective public engagement 
and science communication. There is, therefore, an 
argument for the democratisation of science, to make 
information accessible to everyone, to engage the public in 
scientific issues, and to involve them in scientific research 
endeavours (Mason and Garbarino 2016; Salomon 
et al. 2018). Democratizing science in ecology and 
conservation has the potential to increase understanding 
of environmental issues and scientific research methods, 
catalysing bottom-up action, greater environmental 
stewardship, and ecological conservation. Furthermore, 
scientists can involve the public in the research process 
through gaining insight into local knowledge and value 
systems, and through volunteer contributions to data 
collection and interpretation (Kimura and Kinchy 2016). 
Involving the public in research can be a highly effective 
means of public engagement and science communication, 
as it involves sustained, longer-term engagements. Also, 
there is often a two-way dialogue in which both the public 
and researchers can provide input and feedback, consulting 
and collaborating on the research (Pace et al. 2010; NCCPE 
2016). One way that public engagement is increasingly 
embedded in ecological research is through data collection 
by members of the public. For ecology and conservation, 
specifically, the public can contribute to species monitoring 
and biological recording, documenting species’ occurrences 
to track species’ distribution, abundance, and/or phenology 
(Sutherland, Roy, and Amano 2015).

Volunteers play a key role in biological recording and 
have been contributing to ecological datasets for centuries 
(Silvertown 2009; Dickinson, Zuckerberg, and Bonter 2010; 
Miller-Rushing, Primack, and Bonney 2012; Pocock et al. 2015). 
This process falls under the overarching term citizen science 
which broadly encompasses any volunteer involvement in 
science (Roy et al. 2012). The term was coined in the 1990s 
as a strategy for improving public trust and understanding 
in science (Woolley et al. 2016). More recently, the term has 
been adopted to describe a range of initiatives and research 
endeavours across disciplines (Woolley et al. 2016), with 
citizen science now featuring more in published literature 
(Kullenberg and Kasperowski 2016). Within the field of 
ecology, in addition to biological recording, citizen science 
schemes can also include tasks such as identifying species 
from photographic records or digitising data associated with 
specimen collections (Roy et al. 2012).

Citizen science recording schemes have collected some 
of the longest-running time-series datasets of species 

populations (Devictor, Whittaker, and Beltrame 2010). 
Such datasets play a key role in assessments of species’ 
changes in relation to pervasive anthropogenic pressures 
such as climate change, pollution, invasive species, and 
urbanisation (Sutherland, Roy, and Amano 2015). Biological 
recording benefits from contributions by volunteers 
because those contributions increase the geographical 
range and temporal span over which species can be 
recorded, providing long-term species-distribution datasets 
that can be used to assess and compare ecological trends 
(Pocock et al. 2015). These recording schemes typically 
rely on ad hoc, opportunistic records, although there are 
examples of hypothesis-led citizen science schemes, as 
well as schemes that have set up standardized monitoring 
protocols (Sewell, Beebee, and Griffiths 2010; Flower, Jones, 
and Bernede 2016).

Data quality is a concern with citizen science data, as 
generally unstructured sampling protocols can introduce 
bias and noise (Isaac et al. 2014; Pescott et al. 2015; Kamp 
et al. 2016). This can present challenges when analysing 
citizen science datasets and can limit the scientific 
questions that can be addressed (Isaac et al. 2014). The 
accuracy of citizen science data has also been questioned, 
owing to issues surrounding validation and verification 
(Kosmala et al. 2016a). Validation is a process through 
which records are checked to ensure the data have been 
submitted correctly. Verification is the process of checking 
records for correctness; within ecological citizen science 
schemes, this generally means confirming species identity 
(Tweddle et al. 2012). Verification is a critical process for 
ensuring data quality of, and trust in, citizen science 
datasets (Gilfedder et al. 2019), enabling those datasets 
to be used in environmental research, management, and 
policy development (Tweddle et al. 2012).

In this review, we explore the different approaches 
that published citizen science schemes use to verify their 
data, the breadth of information they use to verify each 
record, and the citizen science scheme attributes that may 
influence choice of verification approach. Our aims are 
to identify the options available for verification of citizen 
science data and to examine whether citizen science 
schemes are using the most suitable verification approach 
to maximise confidence in, and validity of, the data, whilst 
also ensuring efficient verification of records.

SYSTEMATIC REVIEW METHOD
LITERATURE SEARCH
To survey the verification approaches across existing citizen 
science schemes, we conducted this review based on the 
systematic review protocol developed by the Collaboration 
for Environmental Evidence (2018). The search terms we 
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used were replicated from a review of the diversity and 
evolution of citizen science programmes carried out by 
Pocock et al. (2017). These terms were “citizen science,” 
“take part AND (nature OR environment),” “volunteer based 
monitoring,” “public participation in scientific research,” 
and “participatory science.” We also used the search term 
“volunteer.” Searches were carried out in October and 
November 2019 using Web of Science, and were filtered 
by “ecology,” “zoology,” “entomology,” and “ornithology.” 
To ensure that our keyword searches in Web of Science 
were not missing large components of the literature that 
might be found elsewhere, additional searches for the 
terms “ecology AND (volunteer OR citizen science)” were 
carried out using Google Scholar, and the first 100 results 
were reviewed.

We excluded papers if there were no mentions of a 
specific citizen science scheme, or if volunteers had been 
recruited to assist with the research but the contributions 
did not continue beyond the study and were not linked to 
a particular scheme. For example, Flaherty and Lawton 
(2019) requested, using various media outlets, information 
on grey squirrel, red squirrel, and pine marten sightings by 
the general public; public sightings were used alongside 
hair tube and live trapping surveys to assess species 
distributions. In another example, data were collected from 
recreational anglers to combine with mark-recapture data 
to estimate populations of fish species (Lyon et al. 2019). 
These volunteer contributions were only for the duration 
of the study and were not linked to any particular scheme. 
We also excluded review papers, or results that discussed 
citizen science from a theoretical point of view. Finally, we 
excluded papers if the citizen science scheme focused on 
collecting data solely on the abiotic environment. These 
schemes included those collecting data on water quality 
(Křeček et al. 2019) or on soil quality (Bone et al. 2012). 
Where papers had used data from multiple schemes, we 
recorded all of the schemes included in the research. Citizen 
science schemes nested within a larger citizen science 
initiative or repository were considered separately if the 
paper identified the specific scheme. For example, Snapshot 
Serengeti (Swanson et al. 2015), Penguin Watch (Jones et 
al. 2018), and Season Spotter (Kosmala et al. 2016b) were 
referenced specifically, even though they all fall under the 
Zooniverse citizen science community, and therefore we 
recorded them as separate schemes. By contrast, Torney 
et al. (2019) referenced only the Zooniverse, and therefore 
the Zooniverse was also recorded. The search yielded 434 
papers (see Supplemental File 1 for full reference list), which 
drew on 259 citizen science schemes (see Supplemental 
File 2 for full list of schemes).

The search strategy aimed to encompass a broad 
range of citizen science programmes, including recording 

schemes that do not identify as a citizen science scheme 
but do fit the definition of citizen science. It is, of course, 
likely that schemes will have been overlooked by the 
searches—most notably, schemes that have not led to 
published outputs. The term citizen science has been 
widely used only in recent decades, although volunteers 
have been contributing to ecological datasets for centuries 
(Silvertown 2009; Dickinson, Zuckerberg, and Bonter 2010; 
Miller-Rushing, Primack, and Bonney 2012; Pocock et al. 
2015), and therefore such volunteer contributions may not 
be linked to a specific volunteer recording scheme and are 
not referenced in literature. Furthermore, schemes may 
not provide information on the citizen science scheme 
attributes or verification approach publicly, and therefore 
would not be included in the results of this literature review. 
Although these searches did identify some schemes from 
non-English-speaking communities and regions, the 
search strategy is inherently biased towards schemes that 
operated in English (Pocock et al. 2017). These biases in the 
search methodology should not systematically impact the 
conclusions of the review.

IDENTIFYING VERIFICATION APPROACHES AND 
CITIZEN SCIENCE SCHEME ATTRIBUTES
Verification approaches used by citizen science schemes 
were not always documented in the paper itself. 
Therefore, we carried out searches to obtain information 
on verification approaches and the information used to 
verify records, as well as citizen science scheme attributes, 
in both academic and non-academic search engines. 
We obtained this information from either the published 
literature in which the scheme featured or the scheme’s 
public online platform, which may be a website specifically 
for a scheme, or a web page embedded within a larger 
website (see Supplemental File 2 for full list of schemes, 
attributes, and sources).

For each citizen science scheme, we identified the 
following attributes: number of species recorded through 
the scheme, number of occurrence records collected 
through the scheme, data type, number of participants, 
geographical extent, and duration in years. Data type refers 
the amount of information or evidence needed to submit 
an occurrence record to a scheme. For example, some 
schemes require photos, recordings, or physical specimens 
to be submitted before an occurrence can be confirmed. 
Other schemes allow indirect or direct sightings to be 
submitted without further evidence. Indirect sightings 
include observations such as mammal tracks or dung at 
a given location. Direct sightings refer to a species being 
observed but the minimum information required for an 
occurrence to be submitted is species name, location, 
and date.
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DATA ANALYSIS
We performed simple analyses to investigate two 
questions. First, we asked what attributes of schemes 
influence whether we were able to find information on 
their approaches to verification. Second, using those 
schemes for which we were able to find information on 
approaches to verification, we asked which attributes of 
the schemes influenced the approaches that were used.

Some attribute categories included very few schemes. 
Therefore, we aggregated some categories for our analysis. 
Specifically, we classified numbers of participants as either ≤ 
1,000 or > 1,000; numbers of records as either ≤ 1 million or 
> 1 million; and data type as either “No evidence” (for reports 
of direct or indirect sightings without physical evidence) or 
“Evidence available” (for those data points associated with 
specimens, photographs, or recordings).

To assess whether scheme attributes influence whether 
or not we were able to find information on verification 
approaches, we focused on schemes for which all scheme 
attributes were available. Inevitably, this biased the data 
towards schemes with more complete and accessible 
information. However, this was necessary for a complete 
investigation of which scheme attributes seemed most 
predictive of whether verification information could be 
identified, and still resulted in reasonable sample sizes of 
schemes with and without verification information. Using this 
focused dataset, we ran a binary logistic regression including 
the main effects of geographic scale, participant numbers, 
record numbers, species numbers, data type (all categorical), 
and scheme duration (continuous). We used the dredge 
function from package MuMIn (Barton 2020) to determine 
the most informative models nested within this global model.

To assess which scheme attributes appear to influence 
verification approach, we used multinomial regression 
(function multinom from package nnet; Venables and Ripley 
2002). Specifically, we modelled the probability that expert, 
automated, community consensus, or other verification 
approaches would be used as a function of the same 
scheme attributes included in the saturated binary logistic 
regression. Once again, we focused on only those schemes 
for which all attributes were available. Some schemes used 
more than one approach, in which case those schemes 
appeared in our data set once for each approach used. 
The dredge function was used again for model selection, 
considering main effects only.

RESULTS
SUMMARY OF CITIZEN SCIENCE RECORDING 
SCHEMES
Of the 259 citizen science schemes, the focal taxa were 
birds (N = 97), invertebrates (N = 67), mammals (N = 24), 

plants and fungi (N = 17), and amphibians and reptiles (N = 
8). As well, there were schemes that allowed any taxa to be 
recorded (N = 27) and schemes that focused on marine taxa 
(N = 9). There were also schemes that recorded invasive 
species (N = 6) and schemes that recorded roadkill (N = 4). 
There was substantial variation in the number of species 
recorded through the schemes. Where this information was 
available (N = 203), 68 schemes had recorded 1–10 species, 
50 schemes had recorded 11–100 species, 59 had recorded 
101–1,000 species, 15 had recorded 1,001–10,000 species, 
and 11 had recorded more than 10,000 species.

Of the schemes for which record number was available 
(N = 140), 12 schemes had fewer than 1,000 records, 95 
schemes had between 1,000 and 1 million records and 33 
had more than 1 million records. The data type submitted 
with each record varied across schemes: 18 allowed indirect 
sightings to be submitted, 165 required direct sightings to 
be submitted, 51 required photo submissions, 10 required 
recordings, and 15 required specimens to be submitted.

To determine the number of citizen scientists involved in 
each scheme, we included both those who collected data 
and registered users who may verify data. Of the schemes 
for which this information was available (N = 165), 76 had 
between 1 and 1,000 participants, 86 had between 1,000 
and 1 million participants, and 3 had more than 1 million 
participants.

In terms of geographical extent, 17 schemes collected 
data at a global, cross-continental scale. Across the 
remaining schemes, 34 operated across multiple countries 
within the same continent, 125 schemes collected data 
at a country level, and 83 schemes operated at a regional 
level (i.e., the level of a region within a country). There were 
schemes operating on every continent besides Antarctica, 
with 106 in Europe, 96 in North America, 17 in Oceania, 10 
in Asia, 8 in Africa, and 5 in South America.

The schemes we reviewed spanned a wide range of 
ages. Of schemes where duration was available (N = 225), 
90 schemes had been running for less than 10 years, 64 
had been running for between 10 and 20 years, 34 had 
been running between 20 and 30 years, and 37 schemes 
had been running for longer than 30 years.

APPROACHES TO DATA VERIFICATION IN 
CITIZEN SCIENCE SCHEMES
Across the 259 citizen science schemes, no information 
was found on verification approach for 117 of the schemes. 
Within the schemes for which verification information 
was found, 118 schemes relied on expert verification, 24 
verified data through community consensus, and 14 used 
automated approaches, which encompassed algorithmic 
approaches without human classification. Several of the 
schemes used multiple verification approaches, and all of 
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the schemes that used automation to verify data used at 
least one other method of verification on a subset of the 
data. Most commonly, automation was used alongside 
expert verification. Other verification approaches included 
using existing independent (West 2012) or expert (Hof 
and Bright 2016) datasets to confirm the likely accuracy 
of citizen-submitted records, and carrying out follow-up 
surveys in a subset of locations (Kabat et al. 2012).

The information used to verify citizen science data 
refers to the record-level information that is used by citizen 
science schemes when carrying out data verification of 
species occurrences. This was categorised as species, 
environmental context, and recorder expertise. Species 
information is based on ease of identification (Pocock et 
al. 2015), confusion with other species (Siddharthan et 
al. 2016), rarity, and co-occurrence with other species. 
Environmental context takes into account the time, date, 
and location of the observation and, therefore, whether 
the species’ occurrence was likely given the time of day, 
season (Dennis et al. 2016), habitat (Pocock et al. 2015), 
documented range of the species (Terry, Roy, and August 
2020), and phenology (Roy and Sparks 2000). Attributes 
of the recorder that are of interest could include the 
experience and expertise of the individual submitting 
the record. This can be considered qualitatively when 
submitting the record, by asking the recorder to state their 
confidence in identification (Waetjen and Shilling 2017) or 
experience with biological recording (Bates et al. 2015). 
Recorder expertise can also be quantified after record 
submission, using metrics such as how long the individual 
has been participating in the scheme, volume of records 
submitted, and accuracy of previously submitted records 
(Yu, Wong, and Hutchinson, 2010; August et al. 2020). 
Schemes can also use novel approaches to account for 
recorder expertise. One example of this is iSpot, in which 
recorders develop a taxon-specific reputation via points 
earned once records they have submitted are verified as 
correct by other participants (Silvertown et al. 2015).

Schemes were allocated to one or more of these 
categories based on information provided by the scheme 
on its verification approach. For many schemes, these 
details were not publicly available. Furthermore, individual 
expert verifiers may take into account all, or a combination, 
of these factors on a record-by-record basis, using their 
regional and taxonomic expertise as well as their personal 
knowledge of individual contributors’ abilities to identify 
species correctly. Therefore, it is unlikely that we were 
able to catalogue for our analysis all of the information 
considered by schemes and verifiers. Across the schemes 
for which the required information was available, 105 
used information on the species itself, 86 considered 
the environmental context, and 13 used information on 

recorder expertise. The majority of schemes used species 
information and environmental information together.

CITIZEN SCIENCE SCHEME ATTRIBUTES AND 
VERIFICATION APPROACH
We restricted our analysis to 103 schemes with complete 
information on scheme attributes. As expected, this 
biased schemes towards those with available verification 
information (all data: schemes with verification information 
= 142, schemes without = 117; complete attribute data: 
schemes with verification information = 73, schemes 
without = 30; Fisher’s test, p = 0.006). Nevertheless, we 
were still able to model the propensity for verification 
information to be found. The best-performing model 
(based on Akaike information criterion) included data type, 
number of records, and scheme duration (Figure 1). Only 
more complex versions of the same model had ∆AICc < 6, 
and ∆AICc for the null model was > 8.

Using the 73 schemes for which scheme attributes 
and verification approach were found, we modelled the 
factors that best predicted the verification approaches 
used. Among the schemes we considered, 61 used expert 
approaches, 7 used automated approaches, 12 used 
community consensus approaches, and 8 used other 
approaches. Given the low sample sizes, there was limited 
evidence of clear predictive effects of scheme attributes. 
Among the models examined, only those including number 
of participants, data type, or both, performed better than 
the null (∆AICc for the null model was 1.9). Recognising 
that these are weakly supported effects, we nonetheless 
note that a model including both number of participants 
and data type suggests that: (i) automated approaches 
are used only for schemes with more participants and 
are slightly more common for schemes without physical 
evidence; (ii) community consensus approaches are more 
common for schemes with more participants and for 
which evidence is available; (iii) expert approaches are 
more common in schemes with fewer participants, but for 
schemes with more participants, they are more common 
when no physical evidence is available; and (iv) other 
approaches are most common for schemes with a smaller 
number of participants and for which no tangible evidence 
is available (Figure 2).

DISCUSSION

With data quality as a key concern across citizen science 
datasets, there is a need to ensure validity and increase 
trust of these data through verification. This review identifies 
patterns in approaches to data verification among citizen 
science schemes. By identifying the range of approaches 
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Figure 1 The probability of verification information being found given the numbers of participants (left panel, ≤ 1 million [M]; right panel, > 
1 million [M]), duration of schemes, and data type. Fitted probabilities (lines) and standard errors (filled polygons) are estimated using the 
best-performing binary logistic regression model.

Figure 2 The probability of each verification approach (see panel headings) being used for schemes with different numbers of participants 
and different data types. Fitted probabilities (filled columns) are estimated using the best-performing parameters in multinomial 
regressions.
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available and by considering scheme attributes that 
appear to contribute to choices in verification approach, we 
demonstrate the options available to both new and existing 
schemes. Here, we also present an idealised system for 
data verification, identifying where and how such a system 
could be implemented within citizen science schemes.

EXISTING PATTERNS IN VERIFICATION OF 
CITIZEN SCIENCE DATA
No information on data verification was found for over 
40% of the schemes we reviewed. Our analyses suggest 
that information on verification was less likely to be found 
for older schemes, schemes with fewer participants, and 
schemes that do not require the contribution of physical 
evidence (specimens, photos, or recordings). Lack of 
available verification information does not mean that 
no verification is carried out; for schemes that lack a 
web presence and do not report verification methods in 
publications, verification methods are simply not publicly 
available or therefore are hard to identify. There may, 
however, be schemes that do not consider verification, 
trusting the recorders’ abilities to report species correctly 
(Wiggins et al. 2011). This may be justifiable if schemes 
specifically recruit knowledgeable volunteers (Gardner 
2019) or provide training to volunteers before surveying 
(Smale et al. 2019). Some citizen science schemes focus 
recording effort on selected days annually (Chase and 
Levine 2016). In these cases, volunteers may be joined and 
led by an expert (Chase and Levine 2016) and therefore 
errors could be identified and corrected, in person, during 
the data collection. Smaller-scale citizen science schemes 
may focus on collaborative, community-based approaches 
with small numbers of participants (Tweddle et al. 2012). 
In these cases, there may be an established trust amongst 
members, or verification may happen more informally 
between participants. Acknowledging this, there is still an 
imperative to report on verification methods to increase 
trust in the dataset and to benefit end users of the data. 
Arguably, this imperative is even more pronounced for 
those schemes that do not require physical evidence, for 
which verification information is currently harder to find. 
If there is transparency in verification approach, then the 
data quality can be better understood, and potential error 
or bias can be quantified and accounted for in analyses of 
the data (Pocock et al. 2014).

Where verification information was available, expert 
verification was the most common approach. Verification by 
experts, although not flawless (McBride, Fidler, and Burgman 
2012), has a high accuracy (Yu et al. 2012), and therefore 
may be a more suitable approach to obtain the level of data 
quality required for published research outputs (Bonter and 
Cooper 2012). Furthermore, schemes that monitor rare 

(Donnelly et al. 2014) or invasive species, for which accuracy 
of individual records is crucial to guide management actions 
(Crall et al. 2011; Pusceddu et al. 2019), require expert 
verification to pinpoint occurrences and ensure high-quality 
data. Expert verification can be time consuming for large 
datasets (Kelling et al. 2011; Yu et al. 2012), and schemes 
that operate at a large geographic scale rely on extensive 
networks of taxonomic and regional experts (Sutherland, 
Roy, and Amano 2015). A lack of verifiers in certain regions 
or with particular specialisms can lead to gaps in verified 
data (Bonter and Cooper 2012). As a result, there can be a 
significant time lag between submission and verification of 
records (Bonter and Cooper 2012).

Community consensus was the second most common 
verification approach. It was more common among 
schemes with a larger number of participants and for 
schemes that required evidence to be submitted with 
each record. Community consensus may be preferable 
for schemes with sufficient participants, as crowdsourcing 
the assessment of physical evidence spreads the task of 
verification across a greater number of individuals, and can 
be particularly useful when verifying camera trap datasets, 
which can rapidly grow to very large sizes (Swanson et al. 
2016; Hsing et al. 2018). Community consensus approaches 
can also be used alongside automated approaches in 
a hierarchical verification system (Green et al. 2020). 
Once multiple users have classified a record, consensus 
algorithms can be applied to analyse classifications and to 
categorise confidence in a record (Siddharthan et al. 2016; 
Hsing et al. 2018). Community consensus approaches also 
have the potential to enhance public engagement and 
community development. Diversifying the tasks in which 
citizen scientists can be involved can make the scheme more 
accessible to those who do not have the access or mobility 
to go to areas where they can record species (Borden et 
al. 2013). When using community consensus approaches, 
expert verification may still be required if datasets contain 
species that are less straightforward to identify, such as 
commonly-confused species pairs (Hsing et al. 2018). This 
approach relies on a large number of citizen scientists 
investing time in the scheme (Swanson et al. 2016; Hsing 
et al. 2018), and therefore may not be suitable for schemes 
with smaller numbers of users. Furthermore, if community 
consensus approaches are used for schemes that operate 
on a global scale and record many species, the community 
may not have the local knowledge required to verify records 
for species that are less straightforward to identify or are 
less well known amongst the general public (Swanson et al. 
2015). As a result, the verified data in these schemes may 
be skewed toward widely recognised, charismatic species.

Perhaps unsurprisingly, owing to their recent emergence, 
automated approaches were not widely used among the 
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subset of citizen science schemes reviewed. Schemes that 
used automation, did so in conjunction with other methods 
including, most frequently, expert verification. Automation 
is typically the first step in the verification process, with 
records being checked for a range of attributes. These 
include whether they are in the expected geographical 
and temporal range, if the species is particularly rare, or for 
schemes that ask for the number of individuals of a species 
recorded, whether that number is unusually high (Kelling et 
al. 2011; Bonter and Cooper 2012; Yu et al. 2012; Pocock et al. 
2015). Any records that do not meet set criteria are flagged 
and then sent to expert verifiers (Kelling et al. 2011; Bonter 
and Cooper 2012; Yu et al. 2012). Automation reduces the 
burden on expert verifiers by decreasing the volume of 
records that require verification. Automated approaches 
are widely applicable across citizen science schemes and 
can be applied to records for a huge diversity of taxa 
(Pocock et al. 2015). Automation is the most time-efficient 
way of verifying citizen science data, allowing data to be 
reviewed in real time as records are submitted, as well as—
potentially—providing citizen scientists with immediate 
feedback on their submissions (Kelling et al. 2011; Bonter 
and Cooper 2012; Yu et al. 2012; van der Wal et al. 2016). 
From the perspective of participant involvement, having 
rapid feedback on submitted records has the potential 
to strengthen engagement and to increase motivation 
to continue recording (Rotman et al. 2014). Although 
automation can reduce the number of records that require 
expert review, careful consideration of the verification rules 
is required to reduce the burden on experts without leading 
to classification errors (Yu et al. 2012).

With the distributions and abundances of many species 
changing rapidly in response to persistent anthropogenic 
environmental change, timely and accurate verification 
is important to ensure the availability of up-to-date 
biodiversity information (Sutherland, Roy, and Amano 
2015). Verification by experts has perhaps been the default 
approach for citizen science schemes in the past (Silvertown 
2009; Kosmala et al. 2016a). With the growing volume of 
citizen science data that has been and will continue to be 
collected, there is an argument for schemes to explore and 
implement other verification approaches that allow large 
quantities of data to be verified more efficiently. The most 
appropriate verification approach may vary from scheme to 
scheme, and research may be required to assess the risks 
or rewards of alternative approaches. Expert verification 
is likely always to be required for a subset of the data, 
but given the emergence of community consensus and 
automated verification in recent decades (Newman et al. 
2012), these approaches should be carefully considered 
for schemes moving forward. As the position of citizen 
science in ecological research evolves, with new schemes 

continually being established, verification approaches must 
evolve to suit the needs of schemes whilst also ensuring 
data quality and accuracy of records.

RECOMMENDATIONS FOR VERIFICATION OF 
CITIZEN SCIENCE DATA
Our review highlights the range of verification methods 
used by different citizen science schemes. In some cases, 
this variation might reflect deliberate and informed choices 
based on what works best given the attributes of different 
schemes. In others, it is likely that choices reflect historical 
contingency, or cost and ease of implementation. Some 
schemes may be limited to a certain approach due to 
available resources, time, or personnel. Others may feel 
bound to a verification approach in order to maintain 
consistency over time. In those situations, retrospective 
application of new methods, or calibration by running two 
systems in tandem, might provide reassurance to enable 
the implementation of new approaches.

Whilst a range of factors may influence choice of, or lack 
of, verification approach, transparency of documentation of 
verification approaches is required to increase confidence 
in citizen science as a means of collecting reliable data. 
Therefore, we recommend that citizen science schemes 
publicly report their verification approach. Schemes that 
lack a platform on which this information can be made 
readily available should ensure that published research 
clearly identifies whether and how the data were verified.

An idealised system for verification
Considering the options available for verification and the 
attributes that may contribute to the choice of verification 
approach, we have outlined a hierarchical system for 
verification (summarised in Figure 3). This approach 
considers the data that can be used to verify records, 
where automated and community consensus approaches 
can be implemented, and when expert verification may still 
be required.

When verifying records, schemes should consider the 
breadth of information available to improve verification, 
making use of all data that accompanies each record (see 
Figure 3). Ideally, recorders should submit the maximum 
available evidence with each record, such as photos or 
recordings, assuming the user interface through which 
volunteers submit records is fit for purpose. Submitting 
photos or other evidence may not be possible for every 
scheme, particularly those centred around annual count 
events, such as the Batumi Raptor Count (Wehrmann et 
al. 2019) or Christmas Bird Count (Meehan, Michel and 
Rue 2019), where large numbers of species are recorded 
during a constrained period. Furthermore, requiring more 
information to be submitted with every species record may 
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discourage volunteers from taking part, creating a trade-off 
between data completeness and data volume. For many 
schemes, the minimum amount of information required 
is date, location, and species name. For other schemes, 
indirect sightings can be submitted, particularly those 
recording mammal species, which are often less abundant, 
frequently nocturnal, and less likely to be observed directly. 
Verification approaches need to be developed and applied 
in view of the minimum amount of information that 
typically comes with each record. Even with the limited 
record-level information that may accompany each 
record, verification approaches can still take into account 
information on the species, the environmental context, and 
the recorder (see Figure 3). This can be done through input 
from expert verifiers, or by using secondary metadata such 
as historical data recorded through the scheme or external 
datasets. These data can then be used to cross-reference 
the metadata with each record (Terry, Roy, and August 
2020). If schemes have large volumes of data across many 
species and records with varying amounts of information, 
a hierarchy of approaches could be implemented. This 

allows the bulk of records to be verified by automated and 
community approaches, and then flagged records undergo 
additional levels of verification (see Figure 3).

Automated verification approaches are flexible and—
resources for implementation permitting—could be used 
more widely across citizen science schemes to verify 
large quantities of data efficiently. Automation can be 
implemented within schemes that already have large 
quantities of historic data, as these can be used to inform 
algorithms and develop filters for the datasets (Kelling 
et al. 2011). To account for verification metrics for the 
species, environmental context, and recorder expertise 
(see Figure 3), automated approaches can incorporate 
record-level information and secondary metadata (Terry, 
Roy, and August 2020), as well as expert knowledge 
(Kelling et al. 2011). For automated approaches to account 
for environmental factors, location, date, and time are 
required, as well as prior knowledge of the species’ 
geographical and temporal range (Sutherland, Roy, and 
Amano 2015). Using contextual information is most useful 
for schemes that focus on monitoring species’ phenology, 

Figure 3 Summary of recommendations for an idealised system for verification of ecological citizen science data. Considerations for 
verification highlight some of the questions that can be answered using the record-level information and secondary metadata. If the 
answer to these questions is yes, then we propose further levels of verification may be required. First-level verification indicates the 
attributes of schemes that could use community consensus and automated approaches. Additional verification highlights the kinds of 
records that may be flagged and therefore will need to be reviewed by experts.



10Baker et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.351

or when there are no photos or recordings submitted with a 
record. However, it is associated with the risk that sightings 
could be rejected if the species displays novel activity 
patterns or range shifts. To account for recorder expertise, 
individual recorders require a unique ID. It is important 
to consider that as individuals submit more records, their 
accuracy when identifying species may improve. When 
accounting for environmental context or recorder expertise 
in automated verification approaches, it is essential to 
retain flexibility, with rules being dynamically updated 
as unexpected sightings accumulate or as recorder 
expertise improves.

Another approach that can be used as the first level 
of verification is community consensus (see Figure 3). 
This approach is less widely applicable than automated 
verification and typically requires an online platform that 
connects recorders and verifiers, and large enough numbers 
of volunteers to verify the volume of records (Silvertown 
et al. 2015; Siddharthan et al. 2016; Swanson et al. 2016; 
Hsing et al. 2018). Community consensus approaches are 
more suitable for species that are more widely recognised 
by the public and where there is photographic evidence 
with each record (Swanson et al. 2016), as this means that 
the record can be verified based on visual attributes of 
the species, and no prior knowledge of the environmental 
context is required.

If automated and community approaches cannot verify 
records with an appropriate level of certainty, experts 
can provide additional levels of verification (see Figure 3). 
It is important, therefore, for schemes to decide on their 
required level of certainty, which may vary depending on 
the species and the purpose for which the data will be used. 
For most schemes, a proportion of the data will ultimately 
need to be referred to experts for verification. A key aim 
of automated approaches is to minimise the proportion 
of the data that require expert verification. This additional 
verification is likely to be required for species that have not 
been recorded before through the scheme, for rarer species, 
for invasive species for which pinpointing the exact location 
of individuals is necessary (Lagoze 2014), and for species 
that are recorded beyond their typical range or habitat. If 
a scheme is focusing exclusively on these kinds of species, 
expert verification may be the most appropriate approach. 
Expert insight can also be used to inform automated 
verification approaches, by providing information on the 
species and environmental context that can be accounted 
for in data filters. Furthermore, if a scheme is considering 
recorder expertise when verifying data, expert insight could 
also be beneficial to identify trusted recorders, allowing 
their submissions to be used in place of a gold standard 
when verifying and analysing data.

CONCLUSIONS

We reviewed approaches to data verification across 
ecological citizen science datasets, and assessed factors 
that appear to influence the choice of verification approach. 
Alongside this, we highlighted that the verification 
approaches of many citizen science schemes are not 
readily available to the public. We recommend how citizen 
science schemes can approach verification and make 
appropriate choices to ensure data quality. Citizen science 
plays an important role in data collection at a geographical 
and temporal scale unmatched by other data collection 
methods, and is a valuable means of engaging the public in 
scientific endeavours. By developing improved verification 
approaches and using the full range of information 
available, issues of data quality within citizen science 
datasets can be addressed, thereby increasing trust in 
citizen science approaches and strengthening the place of 
citizen science within ecological research.
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