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Although quality control for accuracy is increasingly common in citizen science projects, 
there is still a risk that spatial biases of opportunistic data could affect results, especially if 
sample size is low. Here we evaluate how well the sampling locations of North Carolina’s 
Candid Critters citizen science camera trapping project represented available land cover 
types in the state and whether the sample size (4,295 sites) was sufficient to estimate 
ecological parameters (i.e., species occupancy) with low bias and error. Although most 
sampling was opportunistic, we used a “Plan, Encourage, Supplement” approach 
to improve our spatial coverage. We assessed potential biases by comparing seven 
dimensions of habitat (i.e., land cover, elevation, road density, etc.) sampled by camera 
traps with those available in the state, using a minimum sample threshold approach, 
and found that the variation of habitat across the state was sufficiently sampled. 
At the ecoregion level we sampled 99.2% (±0.01) of the variation of potential habitat 
“adequately” and 96.4% (±0.03) “very adequately.” Supplemental sampling by staff 
helped meet sampling adequacy for 6.8% of ecoregion-habitat classes, especially in less 
populated parts of the state. Compared with results from the full data set, the relative bias 
and error with subsets of the data dropped below 10% relatively quickly with increasing 
sample size for estimates of occupancy, suggesting that results estimated with the full 
sample are robust, although the precision of particular ecological relationships were more 
variable. These analyses show that opportunistic sampling can be representative of large 
areas if sample size is high enough and that a priori sampling goals can help improve 
coverage by encouraging volunteers to sample in certain places or through supplemental 
data collection by staff.

CORRESPONDING AUTHOR:

Roland Kays

North Carolina Museum of 
Natural Sciences, US

rwkays@ncsu.edu

KEYWORDS:
sample design; camera trap; 
spatial bias; mammals; large 
scale

TO CITE THIS ARTICLE:
Kays, R, Lasky, M, Parsons, AW, 
Pease, B and Pacifici, K. 2021. 
Evaluation of the Spatial Biases 
and Sample Size of a Statewide 
Citizen Science Project. Citizen 
Science: Theory and Practice, 
6(1): 34, pp. 1–12. DOI: https://
doi.org/10.5334/cstp.344

mailto:rwkays@ncsu.edu
https://doi.org/10.5334/cstp.344
https://doi.org/10.5334/cstp.344
https://orcid.org/0000-0002-2947-6665
https://orcid.org/0000-0002-9567-4643
https://orcid.org/0000-0003-1076-2896
https://orcid.org/0000-0003-1528-6075
https://orcid.org/0000-0002-7518-7186


2Kays et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.344

INTRODUCTION

Data quality is central to citizen science projects producing 
trustworthy scientific outcomes. As the citizen science 
approach became more popular, some scientists voiced 
concerns about the potential for volunteers to produce 
data sets without large amounts of error (Dickinson, 
Zuckerberg, and Bonter 2010) that would be able to detect 
changes in the population status of wild species (Danielsen 
et al. 2014). In response to those challenges, many best 
practices in citizen science now feature mechanisms to 
assess the quality of data. Most of this development has 
focused on the accuracy and trustworthiness of their 
observations (e.g., Crall et al. 2011; Hunter et al. 2013; 
Kosmala et al. 2016). However, even if citizen observations 
are accurate, there is an additional risk for sampling bias 
because most are opportunistic samples (Bird et al. 2014). 

Because citizen science projects rely on volunteers to 
collect data, it is difficult to follow a systematic sampling 
design. For example, in a study of two Canadian aquatic 
monitoring programs, Millar et al. (2019) found clustered 
and biased sampling around lakeshore houses, which 
they referred to as the “cottage effect.” This spatial bias 
can affect biological inference; for example, Weiser et al. 
(2020) found strong bias when building statistical models 
that included non-probabilistically selected sites to survey 
butterflies (also known as preferential sampling; Diggle, 
Menezes, and Su 2010), which are typical of citizen science, 
although they noted that this might be less of a problem with 
larger data sets. There is some evidence that larger sample 
sizes might help offset these biases, as spatial models with 
different sampling schemes were similar for large data sets 
on toads in the United Kingdom (Petrovan, Vale, and Sillero 
2020). Similarly, Callaghan et al. (2020) found that citizen 
science data can be as good as professional records for 
continental diversity mapping once a minimum sample size 
is met. There has also been work on accounting for biases 
in data collection during analysis. For example, Johnston 
et al. (2020) showed how spatial bias can be corrected for 
in spatial models by weighting based on the probability 
of an area being sampled, and Isaac et al. (2014) showed 
how filtering and data corrections could improve power 
to detect trends. However, both of these studies highlight 
the limitations of post-hoc corrections, emphasizing the 
importance of reducing bias at the point of data collection. 

Here we address the questions of spatial bias and sample-
size requirements in a citizen science data set collected as 
part of the statewide North Carolina’s Candid Critters (NCCC) 
camera trapping wildlife survey. Recognizing these potential 
problems at the start of the project, we created an a priori 
study design. During the study, we monitored our progress 
and encouraged volunteers to run cameras in sites that 
would help meet those sampling goals. For the most poorly 

sampled areas, we supplemented the volunteer data with 
professional data collection, employing a hybrid citizen/
professional scientist sampling program. We refer to this as 
the “Plan, Encourage, Supplement” strategy, which is similar 
to the strategies introduced by Callaghan et al. (2019). 

The objective of the NCCC project was to document the 
distribution and ecological relationships of mammals in the 
state through statistical models that relate the occurrence 
of species in the camera traps to environmental data such 
as land cover, habitat type, or degree of human disturbance. 
In this paper, our goal is to assess potential biases in citizen 
science data by comparing the dimensions of habitat 
sampled by our cameras with those available in the state, 
using a minimum sample threshold approach (Callaghan 
et al. 2020). We also evaluate the sample-size robustness 
by comparing the relative bias and precision of wildlife 
metrics (i.e., species occupancy) calculated with subsets 
of the full data set. This subsetting approach provides 
insight into the extent to which finer-scale comparisons 
can be made between regions, seasons, or less common 
species that might naturally have fewer detections with a 
given survey effort. We expect these results will be broadly 
useful for professionals setting up citizen science projects 
who plan to use opportunistic data to study ecological 
relationships and want to ensure they end up with enough 
samples to statistically test hypotheses, and the samples 
are distributed to be representative of the larger study area.

METHODS

The North Carolina’s Candid Critters project worked with 
citizen scientists and the North Carolina Wildlife Resources 
Commission personnel to survey wildlife with camera traps 
across the state over 3 years (Lasky et al. 2021a). Camera 
traps have advantages over some traditional wildlife data 
sources because they collect data across all seasons and 
times of day on a variety of warm-blooded species > 100 
g. The photos allow species identifications to be verified (all 
NCCC pictures were reviewed by experts), and the duration 
a camera is deployed gives a clear record of sampling 
effort. The citizen science approach also allowed us to 
sample private land (52% of sites), for which it is typically 
difficult for researchers to obtain permission, even though 
it can represent a large part of a study area (here 86% in 
southern forests, Butler and Wear 2013).

However, because most (65%) of our cameras were set 
by volunteers, we had limited ability to determine where 
exactly they were set ahead of time. Nonetheless, as part 
of our Plan, Encourage, Supplement strategy, we had a priori 
sampling goals, and recruited and encouraged volunteers 
to set cameras in ways that would meet those goals. We 
supplemented by having staff cameras, as well. When 
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planning the project, we used counties as an operational 
unit, aiming to get samples from all 100 counties. We initially 
quantified the land-cover types across the state as open, 
forested, or developed, and quantified the proportion of each 
primary land-cover type across counties (Lasky et al. 2021a). 
We then used this as a guideline for creating our study 
design on public lands, and for monitoring where cameras 
were run on private lands during the study, aiming for the 
simple goal of having samples in proportion to available 
land-cover types in each county. However, when evaluating 
if our data represents the state, we focused on whether 
we had an adequate sample of a given habitat type (to 
discover animal-habitat relationships) rather than an exact 
proportional match to what is available, since analyses were 
done at larger scales than county (i.e., state or ecoregion). 

As the study progressed, we noticed areas that were 
being under sampled, especially rural areas, and designed 
campaigns to obtain more sampling in those locations 
by recruiting volunteers locally or by encouraging existing 
volunteers to travel outside their home county to set cameras 
on public land (e.g., visit a state park). This encouragement 
was done as part of our ongoing engagement activities 
with volunteers; it included newsletters, social media, and 
webinars (Lasky et al. 2021a), and is similar to the dynamic 
incentives suggested by Callaghan et al. (2019). If sampling 
was still lower than project goals, we supplemented the 
data by deploying cameras ourselves or by working with 
professional partners to run cameras in specific target areas. 

SPATIAL BIAS
A recent empirical assessment of camera-trapping study 
design recommends a minimum of 40 to 60 camera points 
per habitat category (Kays et al. 2020). Based on this, we 
considered > 40 camera points to be an adequate sampling 
of a given habitat type, and > 60 to be a very adequate 
sample. Although this sample-size criteria might still not 
be sufficient for very rare species, it was derived from 

a wide variety of species and sites and serves as a good 
benchmark for our objectives.

Our approach (Box 1) to evaluate the representativeness 
of our sampling involved categorizing a variety of habitat 
types in the state, and evaluating whether each dimension 
was adequately sampled by our cameras. We did this 
first at the state level, but also at the finer-scale level of 
ecoregions. There are three primary ecoregions in North 
Carolina (mountains, piedmont, coastal), and using 
this division allowed us to also evaluate if ecological 
relationships could be different in these different regions. 
To describe the habitats of the state, we generated 10,000 
randomly distributed points across the state, and after 
removing those in open water, used 9,586 random points 
in terrestrial habitats (Figure 1). At each of these points, 
we quantified the habitat with seven different covariates 
describing the natural and human infrastructures that are 
likely to affect animal distribution (Table 1). We then broke 
the variation in these each of these ecological covariates 

Box 1 Overview of our approach for determining 
spatial bias in NCCC camera sites

Objective: Determine how representative the 
locations sampled by NCCC cameras were compared 
with all available habitat in the state. 
Criteria: If a habitat type was sampled by > 40 camera 
sites it was judged as adequate, while those with > 60 
were very adequate.
Habitat Availability: Habitat variation in the state was 
quantified using 9,586 random points. At each point, we 
measured seven different aspects of habitat (Table 1). 
For each habitat variable we split the statewide variation 
into 10 categories (bins in Figure 2). We then used the 
above criteria to evaluate if each bin of each habitat 
variable had been sufficiently sampled.

Figure 1 Map of the 9,586 random points (grey) across North Carolina, USA used to quantify variation in available habitat types, and the 
4,295 sites sampled with camera traps (blue). Black lines indicate the three primary ecoregions (from west to east): mountains, piedmont, 
coastal.
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into bins, each representing 10% of the total statewide 
variation as measured by the random points (Figure 2). In 
the case of highly skewed distributions, we had fewer than 
10 bin levels of available habitat because one category 
would have a very high proportion of the total variation 
(e.g., 60% of random points had 0 roads within 250 m). 
We used these categories to describe the dimensions of 
variation of habitat in the state, and in each ecoregion.

For each of the seven habitat covariates (i.e., elevation, 
road density, etc.; Table 1), we then quantified the habitat 
at the 4,295 sites sampled by our camera traps and placed 
them into the same ten bins as the available habitat 

(Figure 2) to evaluate if we had an adequate (> 40) or very 
adequate (>60) sampling in each dimension. Because 
ecological relationships might be different across the state 
(i.e., animals in the mountains might be more or less likely 
to occupy a site based on local forest cover than animals 
on the coast), we also considered how many camera traps 
fit into these categories separately in the three major 
ecoregions of the state (coastal, piedmont, and mountains). 

SUFFICIENT SAMPLE SIZE
Occupancy modeling was the primary statistical model 
used to estimate ecological relationships and to map 

HABITAT DESCRIPTION UNIT SOURCE

Cover type Open, forest, developed, or other (Homer et al. 2015)

Elevation Elevation m USGS

Large core forests Area within a 5 km radius consisting of continuous forest fragment (forest parcels >2 ha) % (Homer et al. 2015)

Developed Area within a 5 km radius consisting of developed land use % (Homer et al. 2015)

Houses Housing density within 1 km radius of the site houses/km2 (Hammer et al. 2004)

Roads Road density within a 250 m radius of site km/km2 NCDOT

Tree Cover Tree cover at 30 m pixel resolution % (Hansen et al. 2013)

Table 1 Habitat variables considered for the analysis of how representative the data were of the state. 

Figure 2 Distribution of elevational habitats available in North Carolina measured at 9,586 random points across the states. Colors show 
the 10 categories that each represent ~10% of the variation in available habitat. We used these categories to see if our camera samples 
were representative of the dimensions of a given habitat type.
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animal distribution, so we evaluated how sensitive our 
estimates were to changes in sample size for a common 
(white-tailed deer, Odocoileus virginianus) and a rarer 
(coyote, Canis latrans) species (Box 2). If the data set was not 
robust, we would expect occupancy estimates to have high 
uncertainty and to vary greatly with changes in sample size, 
compared with the full sample. That is, we would expect a 
smaller random sample of the 4,295 sites (e.g., 10% of the 
total data set) to result in a different estimate of species-
specific occupancy probability. If the sample was robust, 
however, we would expect estimates of bias and precision 
to level off well before the full-sample estimate. 

We used multiscale single-species, single-season 
occupancy models (Mordecai et al. 2011; Schmidt et al. 
2013; MacKenzie et al. 2017) to estimate species-specific 
occupancy probabilities across the state as a function of 
habitat (e.g., proportion of forest cover in 5 km2 area) and of 
site-level characteristics (e.g., whether camera was deployed 
within a residential yard) (Table 2). Occupancy models are a 
common way to analyze camera trap data while accounting 
for imperfect detection and variation in survey effort. The 
multiscale approach models occupancy probability at two 
scales—unit (i.e., grid cell) and subunit (i.e., immediate 
area surrounding camera) levels—all while accounting for 
imperfect detection of the observations. That is,
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where Zi is the true but unknown occurrence status in grid 
cell i; ψᴪi is the probability of occupancy in grid cell i, which 
is a function of covariates X; and estimated regression 
coefficients β represent the effects of habitat effects 
(Habitat category in Table 2). aij represents the small-scale 
occurrence (or suitability) of the immediate camera-level 
conditions, j, and is conditional on the occurrence status in 

CATEGORY COVARIATE DESCRIPTION

Habitat Forest cover % forested in 5 km2 buffer

Habitat Housing density Average housing density (houses/km) in 5 km2 square buffer

Habitat Contagion index 
(“Clumpiness”)

The propensity for a 5 km2 square raster pixel of a given land-cover class to be neighboring a different 
land-cover class

Habitat PRD Patch richness density. Number of land-cover types per 100 ha in 5 km2 square buffer

Site variation Yard Categorical predictor of whether the camera was placed within a residential yard

Site variation Richness Number of species detected at the camera site

Nuisance Precipitation Precipitation rate averaged over camera deployment period (Mesinger et al. 2006)

Nuisance Temperature Temperature averaged over camera deployment period (Dee et al. 2011)

Nuisance EVI Enhanced vegetation index; a measure of greenness at the camera site.

Nuisance Julian Julian day of the year 

Nuisance Detection distance Furthest distance away that the camera was triggered by a human

Nuisance Bait Categorical of whether bait was used at the camera site

Survey effort Trap nights Length (days) of camera trap deployment. Used to control for variation in effort (i.e., catch per unit effort)

Table 2 Covariates used in occupancy models. 

Box 2 Overview of our approach for determining if 
the sample size was robust

Objective: Determine whether sufficient data 
had been collected to estimate the occupancy of 
common (white-tailed deer, Odocoileus virginianus) 
and rarer (coyote, Canis latrans) species.
Criteria: We used a measure of relative bias and a 
measure of precision relative mean square error 
(RMSE) to quantify the accuracy of occupancy 
estimates with, estimates < 0.1 RMSE or bias judged 
as accurate.
Approach: We used the full data set to estimate 

“true” results and then used subsamples to evaluate 
the effect of sample size. Analyses were conducted 
at the ecoregion level.
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grid cell i (i.e., a camera can be occupied only if the grid cell is 
occupied); өij is the small-scale occupancy probability and is 
again a function of environmental conditions immediately 
surrounding the camera (Site variation category in Table 2); 
and ɣ represents the estimated regression coefficients of 
those covariates. yij are the species-specific camera 
observations and are conditional on the site being suitable 
(i.e., we can only detect the species given that the site 
is suitable for that species); with nij the number of days 
a given camera ran and pij is the site-level detection 
probability, or the probability of detecting the species given 
that the species is present, and is a function of site-level 
detection covariates (Nuisance category in Table 2) with α 
representing the regression coefficients of those effects. 

To evaluate whether our estimates of occupancy were 
robust, we initially fit occupancy models to the complete 
NCCC data set and used these values to reflect our best 
estimate of species-specific occupancy. We then subset the 
data set for the three ecoregions of the state, four seasons, 
and region-season. Seasons were the quarters of the year, 
where winter was January through March, spring was April 
through June, etc. For the region-season combination, we 
further divided the data set among ecoregions and seasons 
(e.g., mountain ecoregion during winter season). We then 
systematically subsampled (i.e., reduced the number of 
cameras available to inform occupancy) the NCCC data 
set to understand how our estimates of occupancy would 
change as we reduced the number of cameras available 
to inform our models. At each percentage, we randomly 
selected cameras 20 different times—resulting in 20 
different groups of cameras—and at each random sample 
we fit the same model that was used with the full data set. 
We recorded the estimated occupancy probabilities from 
the subsampled data, and after the 20 random samples, 

we summarized how those estimates compared with the 
full data set using relative bias (RBIAS) and relative root 
mean square error (RRMSE):
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where r is the number of replicates (in this case, 20), θl̂ is the 
estimated parameter (mean) at replicate l, θl was the true 
parameter value calculated using the full data set, and θ ̅is 
the mean of the true parameter values across all replicates. 
RRMSE is a measure of how variable the estimates of 
occupancy were across the replicates, and RBIAS is a 
measure of how different the estimates were from the full 
data set estimate. The ultimate goal is to have RRMSE and 
RBIAS near zero, which would reflect little variation across 
each replicate, and an estimated occupancy nearly identical 
to the full data set and therefore robust to data reduction.

RESULTS
SPATIAL COVERAGE
At the statewide level, we obtained very adequate (>60 
sites) sampling of all habitat dimensions (58 categories 
across seven habitat dimensions; Appendix 1). The lowest 
sampling was 161 cameras for the 28–54 m elevation 
category. At the ecoregion level, we had adequate samples 
for 93% of the habitat-ecoregion categories (136/146 
samples; Table 3; Appendix 1). However, most of these were 

TREE 
COVER %

STAFF 
CAMS

VOLUNTEER 
CAMS

ALL 
CAMS

RANDOM 
%

ADEQUATE 
SAMPLE (>40)

VERY ADEQUATE 
SAMPLE (>60)

0 17 51 68 13% 13% 13%

0–40 10 24 34 4% 0 0

40–81 22 78 100 9% 9% 9%

81–94 50 96 146 12% 12% 12%

94–98 33 101 134 12% 12% 12%

98–100 18 26 44 3% 3% 0

100 99 348 447 45% 45% 45%

Total 95.6% 92.2%

Table 3 Example of results for the representation of the camera trap sampling for one ecoregion (mountains) for one habitat type (tree 
cover). Columns show number of cameras set in each habitat type by staff, volunteers, and total. Habitat types with <40 camera samples 
(bold) were judged to be insufficiently sampled. In this example, additional sampling by staff ensured adequate sampling for the 98–100% 
category but not for the 0–40% category. The proportional availabilities of a habitat categories for that ecoregion are given by the % of 
random points that fell into that category, which are then summed if they are sampled adequately (>40 pts) or very adequately (>60) to 
quantify the total % of a given habitat type adequately sampled in a given ecoregion. Additional habitats/ecoregion results are in Appendix 1.

https://doi.org/10.5334/cstp.344
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in categories that were extremely rare in a given ecoregion 
(e.g., low elevation areas in the mountains ecoregion). 
When considering the proportion of area each habitat 
made up of each ecoregion, we had adequate sampling 
for habitat types covering 97.5–100% of the state’s area, 
and for three ecoregions, 97.9–99.8% of the area (Table 4). 
At the more stringent, very adequate level we had lower 
coverage of the mountains ecoregion (90%; Appendix 1), 
but similar levels for the other two ecoregions. For these 
seven habitat characteristics and three ecoregions, on 
average, NCCC data obtained an adequate sampling for 
dimensions of habitats covering 99.2% of the area in the 
state (Table 4) and a very adequate sampling for 96.4% of 
the state (Appendix 1). 

The additional sampling done by staff allowed us to 
improve sampling for 35 habitat-ecoregion categories that 
would have been under sampled with volunteers alone, 
providing sampling for 9 categories that had been under 
sampled, and bringing another 26 up to the level of very 
adequate sampling. Many of these categories consisted 
of significant proportions of the total habitat type, such 
that this supplemental sampling allowed us to get a 
representative sample for important aspects of the state’s 
variation (Appendix 1). This was most important for the 
mountains ecoregion where this additional sampling raised 
the percentage of adequately sampled available habitat 
from 91.9% to 97.9%, and increased our proportion of area 
with very adequate sampling from 86% of habitat to 90%. 

SAMPLE SIZE ROBUSTNESS
Occupancy estimates were robust to changes in sample size, 
with error and bias falling below our goal of 0.1 quickly (i.e., 
10%; Figure 3; Supplemental Figure 1). Not surprisingly, error 
and bias fell below our threshold for the more common deer, 
with smaller sample size than the less-common coyote. 
We also plotted the sensitivity of ecological relationships 

described by the model to changes in sample size in 
terms of error and bias (Supplemental Figure 2). The error 
associated with estimating these relationships approached, 
but did not meet, our 10% goal in most cases. Interestingly, 
for a given number of camera sites, error was lower for the 
more restrictive season-region models than the season-
only or region-only (Figure 4), suggesting a fair amount of 
spatio-temporal variability in these relationships. Bias, on 
the other hand, decreased rapidly after few hundred sites 
in most cases (Supplemental Figure 2).

DISCUSSION

The opportunistic nature of sampling within most citizen 
science projects puts them at risk of providing biased 
results, especially if sample size is low. We used a Plan, 
Encourage, Supplement strategy to try to obtain a balanced 
sample by having a priori sampling goals, by encouraging 
volunteers to help meet those goals, by setting additional 
cameras ourselves in underrepresented areas, and in 
general, by obtaining a large sample size. Here we present 
a unique approach to evaluating the representativeness 
of our data, comparing it with a random sample of seven 
environmental covariates (i.e., dimensions of habitat) at 
both the statewide and ecoregion levels. We show that 
we obtained an adequate sample across the spectrum 
of variation in these habitat dimensions at the state 
level, and for most of the variation at the ecoregion level. 
Dimensions that were under sampled were rare, such that 
we adequately sampled 99.2% of the area of the state at 
the ecoregion level, and very adequately sampled 96.4%. 
Furthermore, sample sizes were robust enough to estimate 
occupancy for important wildlife species, although some 
of the ecological relationships we discovered between 
covariates and occupancy were sensitive to reductions in 

HABITAT COVARIATE COASTAL MOUNTAINS PIEDMONT AVERAGE

Tree cover 100 95.6 100 98.5

Elevation 99.7 99.9 99.7 99.8

Large forests 98.9 93.7 99.8 97.5

Developed 100 100 99.6 99.9

Houses 100 100 99.2 99.7

Land use 100 96.3 100 98.8

Roads 100 100 100 100

Average 99.8 97.9 99.8 99.2

Table 4 Percentage of the area in three ecoregions of the state adequately sampled (>40 sites) by camera traps in the North Carolina’s 
Candid Critters(NCCC) project across seven habitat dimensions. See Table 3 for an example of how this was estimated for one habitat/
ecoregion and Appendix 1 for all results.
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sample size. Additionally, our subsetting exercise suggested 
these ecological relationships are variable over space and 
time (i.e., nonstationary). 

This analysis shows that citizen scientists can obtain 
representative data at large scales and demonstrates 
how a hybrid study design can improve sample coverage. 
By having a priori sampling goals, we were able to 
encourage volunteers to sample in ways that gave us a 
more balanced sample, which was sufficient in the more 
populated piedmont ecoregion. This approach also would 
have obtained good coverage in the mountains and coastal 
ecoregions (92% and 98% coverage, respectively), but by 
supplementing this with data collected by staff, we were 
able to boost coverage to > 98% for both. This approach is 
also cost-effective over large areas (Lasky et al. 2021a), and 
provides the opportunity to sample on private land, which 
makes up 86% in the region (Butler and Wear 2013), but is 
difficult to sample without involving citizens. We think this 
Plan, Encourage, Supplement strategy could be useful to 

others designing citizen science projects, whether they are 
trying to get a representative sample of a region, as we did, 
or are targeting specific rare species or habitats.

As citizen science databases grow, they are more likely to 
be used in biodiversity modeling research projects. However, 
some question whether big unstructured, biodiversity data 
sets typical of citizen science actually mean more knowledge 
(Bayraktarov et al. 2019). This is less of a concern for sensor-
based citizen science projects, including camera traps, 
because the primary data come from the sensor, and is thus 
more structured. In the case of camera traps, this means 
that effort is automatically calculated (time in the field), 
data quality can be checked (by examining photographs), 
and the likely absence of a species can be inferred (from lack 
of pictures). However, even with accurate measures from the 
sensors, there is still a risk of spatial bias based on where the 
sensors are actually deployed by citizens, especially if site 
choice is opportunistic (Weiser et al. 2020). Our approach 
for detecting spatial bias in relation to seven dimensions of 

Figure 3 Graphs showing relative bias (a measure how different the estimates were from the full data set estimate) of occupancy 
estimates for white-tailed deer and coyote. These were calculated with subsets of the full NCCC dataset for a) three ecoregions, b) four 
seasons, and c) ecoregion-seasons. Our estimates reached our goal for bias (<0.1) at very small sample sizes for the common deer and 
after sampling 250–300 sites for the less common coyote across all spatio-temporal divisions. The lack of change in these estimates with 
increasing sample size also indicates a stable, robust result. Results were similar for estimates of error (Supplemental Figure 1). 
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habitat is unique, and the results provide more confidence in 
the utility of this data set specifically, and the potential for 
the Plan, Encourage, Supplement approach in general.

Our decision to categorize the habitat variation seen 
across the state into ten bins, and then check if each of 
those categories was adequately sampled, was somewhat 
arbitrary. Spreading the variation into more categories 
would certainly result in fewer being adequately sampled 

by our scheme. However, we felt that having each category 
represent 10% of the variation observed in the state was a 
biologically relevant measure. We also recognize that there 
are other more fine-scale ways to classify habitat types, for 
example, recognizing categorical difference in forest type 
based on tree-species composition. However, categorical 
fine-scale habitat classifications are not often used in 
large-scale ecological models, because most types are 

Figure 4 Graphs showing the changes in the relative error (relative root mean square error [RRMSE], a measure of how variable the 
estimates of occupancy were across the replicates) with larger sample size for estimated ecological relationships for agriculture land cover 
in occupancy models for coyotes and deer. Models were run across regions (top), seasons (middle), and regions-seasons (bottom). Only 
significant model effects are shown. Error estimates approached our 10% goal more rapidly with more restricted models (i.e., region-
season) suggesting spatio-temporal variability in these relationships added variation to the larger-scale models. Full results for changes in 
error and bias of all covariates are available in Supplemental Figure 2. 
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absent from a given area, requiring exhaustive sampling to 
get coverage. Such an analysis would undoubtably uncover 
that some rare habitat types were under sampled. In 
addition, there are some habitats that are not realistic to 
sample with camera traps set by volunteers or professionals 
(e.g., cliffs, pocosins, swamps).

We used occupancy models as our gauge of how sensitive 
ecological results from this data set would be to changes in 
sample size, because these are one of the most common 
metrics derived from this type of data. To allow for spatial 
and temporal variation in these relationships, we conducted 
separate analyses for three ecoregions, four seasons, and 
also twelve region-season combinations. Bias and error 
dropped below our goal of 0.1 with relatively small sample 
sizes for occupancy estimates. However, the precision of 
our estimation of ecological relationships was less robust. 
Interestingly, there was quite a lot of variability in which 
factors were significant depending on the spatiotemporal 
grouping of the data, suggesting substantial local differences 
in the ecology of these species (nonstationarity). For example, 
agriculture was a significant predictor of deer distribution 
in the costal and mountain regions but not the piedmont, 
and in the fall, winter, and spring, but not in the summer 
(Supplemental Figure 2). Likewise, the more restricted region-
season model reached lower error with fewer samples than 
the larger-scale models, further suggesting nonstationary 
ecological relationships. These results show how larger data 
sets can enable more detailed research questions (e.g., 
seasonal or geographic differences in ecology of a species) 
and in our case, still estimate occupancies accurately, 
although with less confidence in specific ecological 
relationships. Although more data could help untangle 
these ecological nuances more precisely, this density of data 
could also be useful for more sophisticated spatiotemporal 
modeling approaches designed to accommodate this type 
of dynamic (Meehan, Michel, and Rue 2019). 

In summary, we showed that sensor-based citizen science 
projects can obtain a robust sample size that is representative 
of habitat variation across large scales. We implemented the 
dynamic incentives strategy of Callaghan et al. (2019) as a 
three-part Plan, Encourage, Supplement strategy that can be 
useful for other citizen science projects, and we think that 
that our approach for assessing the representativeness of 
opportunistic samples could be applied to other data sets 
before using them in modeling exercises. 
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