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Mapping Life – Quality Assessment of Novice vs. 
Expert Georeferencers
Elizabeth R. Ellwood*, Henry L. Bart, Jr.†, Michael H. Doosey†, Dean K. Jue‡,  
Justin G. Mann†, Gil Nelson*,§, Nelson Rios† and Austin R. Mast*

The majority of the world’s billions of biodiversity specimens are tucked away in museum cabinets with 
only minimal, if any, digital records of the information they contain. Global efforts to digitize specimens are 
underway, yet the scale of the task is daunting. Fortunately, many activities associated with digitization  
do not require extensive training and could benefit from the involvement of citizen science participants. 
However, the quality of the data generated in this way is not well understood. With two experiments 
presented here, we examine the efficacy of citizen science participants in georeferencing specimen col-
lection localities. In the absence of an online citizen science georeferencing platform and community, 
students served as a proxy for the larger citizen science population. At Tulane University and Florida 
State University, undergraduate students and experts used the GEOLocate platform to georeference 
fish and plant specimen localities, respectively. Our results provide a first-approximation of what can be 
expected from citizen science participants with minimal georeferencing training as a benchmark for future 
innovations. After outliers were removed, the range between student and expert georeferenced points  
was <1.0 to ca. 40.0 km for both the fish and the plant experiments, with an overall mean of 8.3 km and 
4.4 km, respectively. Engaging students in the process improved results beyond GEOLocate’s algorithm 
alone. Calculation of a median point from replicate points improved results further, as did recognition of 
good georeferencers (e.g., creation of median points contributed by the best 50% of contributors). We 
provide recommendations for improving accuracy further. We call for the creation of an online citizen 
science georeferencing platform.

Keywords: Benchmarking; biodiversity specimens; georeferencing; natural history collections; quality 
assessment; volunteered geographic information

Over the past decade the abundance of location-aware 
mobile devices has simplified recording of high-precision, 
high-accuracy geospatial data for the distribution of organ-
isms. Several mobile apps are now available for this purpose 
(e.g., iNaturalist; iSpot; ebird); these contribute to the qual-
ity of citizen science databases (Spyratos and Lutz 2014). 
However, most biodiversity specimens collected prior to 
the 1990s do not have a latitude and longitude associated 
with them (Beaman and Conn 2003). This means that many 
of the world’s three billion biodiversity specimens (Beach 
et al. 2010), including insects on pins, plants on sheets, and 
fish in jars—some collected as long as three centuries ago—

are not easily mapped. Therefore, their value as an histori-
cal baseline for research, education, and policymaking is 
limited (Cook et al. 2014; Hanken 2013). 

Citizen science participants are playing an increas-
ingly important role in transcribing specimen label data 
(Ellwood et al. 2015), but the expansion of georeferenc-
ing of specimen collection localities by public participants 
lags, partly owing to the dearth of online tools enabling 
georeferencing and the lack of experiments assessing the 
quality of the data produced. Here we present two experi-
ments in which locality descriptions were georeferenced 
(assigned a latitude and longitude coordinate) by both 
expert and novice participants. We compare the data gen-
erated by the two groups and suggest downstream analy-
ses to produce the most accurate locality estimates.

Georeferencing of historical localities is just one of many 
applications within the field of historical GIS (Gregory and 
Ell 2007). While we focus here on members of the pub-
lic georeferencing biodiversity specimens, research in the 
digital humanities also has made important contributions 
to current georeferencing methodologies and technolo-
gies. For example Georeferencer, an online application 
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designed to enable crowd-sourced rectifying of digital 
images of historic maps, has been modified and success-
fully implemented by numerous European institutions 
(Fleet et al. 2012). These efforts have resulted in tens of 
thousands of maps available online for increased discov-
erability, integration with modern map layers, improved 
visualizations, and a host of specialized research projects 
(Fleet et al. 2012; Holdsworth 2003; www.bl.uk/maps/
georefabout.html). Like other fields, the digital humani-
ties have turned to volunteers and crowd-sourcing to 
improve the rate at which historic documents are georef-
erenced (Offen 2012). 

Volunteered Geographic Information (VGI) is a term 
coined in 2007 (Goodchild 2007) to recognize the fact 
that Internet-based media were incorporating geographic 
information wherever possible, including websites and 
mobile device apps for shopping, mapping, social con-
nections, and weather (Sui and Goodchild 2011). VGI has 
grown tremendously over the last decade as evidenced 
by the millions of registered users on OpenStreetMap 
(openstreetmap.org; Haklay and Weber 2008)—a 
world map created and maintained by  volunteers—
and WikiMapia (wikimapia.org), a highly annotated 
world map with embedded links to related Wikipedia 
 articles. OpenStreetMap also has a humanitarian arm of 
 volunteers who are applying their geographical skills in 
poorly mapped parts of the world which are in need of aid, 
e.g., after the years-long rebellion in the Central African 
Republic and after the 2015 earthquake in Nepal (hot.
openstreetmap.org). 

Geotagging also has grown in popularity as text mes-
saging systems, social media outlets, and photo shar-
ing sites (in particular Flickr.com) have enabled users to 
include geographic information with these various media 
(Barve 2014; Kumar and Seitz 2014). Participation in, and 
demand for, this functionality illustrates a general public 
interest in working with geographic interfaces, expand-
ing geographic data and improving freely available geo-
graphic information. Specific applications of geotagging 
have allowed researchers to track epidemic outbreaks 
(Lampos and Cristianini 2010), leverage the public’s inter-
est in visiting clean water bodies for improved water 
 quality (Keeler et al. 2015), and improve epidemiology 
research (Doherty et al. 2011). 

While research applications of VGI are relatively com-
mon (Sui et al. 2013), working with volunteers to add 
geographic information based on a textual description is 
relatively uncommon. In one of the few existing examples, 
volunteers added geographical information to social media 
posts to provide targeted and specific help to victims of the 
2010 earthquake in Haiti (Meier 2012). Immediately after 
the earthquake, Haitian and college student volunteers in 
Boston, Massachusetts, scoured the web for social media 
posts related to the event and created a live map of the 
locations from where they were sent. Some of these posts 
had geographic information embedded in them, while 
others were textual descriptions of a location (i.e., “trapped 
under house at corner of Main and 1st”; Camponovo and 
Freundschuh 2014; Meier 2012) that needed to be given 
a latitude and longitude. Volunteers classified the posts 

based on the type of aid that was needed and added them 
to the map; relief organizations then were able to use the 
live map to provide timely, appropriate help to individuals 
around the country.

Though less immediately urgent, the approach needed 
when georeferencing biodiversity specimens is similar to 
the above example. That is, citizen science participants 
read locality information in the form of short textual 
descriptions and transform that information into a latitude 
and longitude (i.e., a point on a map) and some measure 
of uncertainty, such as the radius of a circle. Biodiversity 
research specimens include a description of the locality 
that references political units (e.g., country, state, county); 
proximity to the nearest town or other geographical fea-
tures; and/or the habitat (e.g., roadside, forest, lakeshore). 
Most descriptions require some interpretation and infer-
ence on the part of the georeferencer. The biodiversity 
research community previously established best practices 
for this type of work (Chapman et al. 2006), however, 
these practices were described prior to the recent expan-
sion of VGI (Elwood et al. 2011; Goodchild 2007). 

Georeferenced biodiversity specimens are crucial for 
many research applications including conservation (e.g., 
Miller et al. 2012; Rivers et al. 2011), estimating species 
ranges and extinctions (e.g., Boakes et al. 2010; Gotelli 
et al. 2012; Tingley and Beissinger 2009), habitat mod-
eling (e.g., Fernández et al. 2015; Hope et al. 2013; Zhang  
et al. 2012), and natural resources management (e.g., 
Taylor et al. 2013). However, the level of accuracy and 
 precision of georeferenced data impacts the quality of the 
downstream research (Graham et al. 2008; Rowe 2005). 
Taking advantage of the irreplaceable historical data pro-
vided by georeferenced biodiversity specimens will require 
a tremendous effort to georeference specimens currently 
in collections (Beach et al. 2010) using efficient methods 
leading to precise results (e.g., Guo et al. 2008). 

Consider an example locality descriptions from the 
label of a plant specimen collected in 1927 in Highlands 
County, Florida, which reads “High pine land; Lake 
Stearns, Fla.” (Fig. 1). Turning this locality into a point on 
a map requires that a georeferencer find the town of Lake 
Stearns, determine where high pine habitat is likely to 
occur, and designate a point with a radius of uncertainty 
that encompasses the most likely collection location(s) of 
this specimen. To further complicate this process, habitat 
types and town names change over time. Since the time 
this specimen was collected nearly 90 years ago the town 
of Lake Stearns has changed its name to Lake Placid, and 
the high pine habitat where this specimen was collected 
may have ceased to exist. Even an expert georeferencer 
may have trouble as map layers usually reflect only cur-
rent information, and finding historical town names and 
habitat types can be challenging. Also, specimen collection 
localities may be intentionally imprecise if a species is rare 
(e.g., to reduce illegal harvesting), and during some time 
periods and at some locations in the last three  centuries, 
collectors were uncertain about precise locations because 
fine-scale maps and distinguishing features of the land-
scape were unavailable. Although many collection  locality 
descriptions may be more straightforward than the one 
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provided in this example, considering the breadth of  
heterogeneity in locality descriptions, can citizen science 
participants contribute accurate and appropriately precise 
specimen georeferences?

To investigate this question, we engaged undergraduate 
students as a proxy for the general population of citizen 
science participants. While we do not have data demon-
strating that these students are comparable to the general 
citizen science community, they are a subset of the gen-
eral population and represent a range of abilities, levels 
of innate interest, and prior experience with geographi-
cal information and biodiversity research. We chose to use 
students so that we could generate sufficient data in the 
absence of an established citizen science georeferencing 
platform and community. We asked: 

1. How accurate are student georeferencers compared 
to automated georeferencing software and experts? 
Does student involvement improve on the accuracy 
of a georeferencing algorithm?

2. What method is most effective at estimating an 
accurate consensus georeference from replicate 
points for the same collection locality? Is the con-
sensus generated in this way more accurate than 
the individual points?

3. How do the best georeferencers compare to the 
group as a whole? That is, is it useful to only 

consider the points produced by the most accurate 
georeferencers?

Methods
To address our research questions we conducted two 
experiments in which undergraduate students and experts 
georeferenced the same collection localities. The two 
experiments differed in the spatial distribution of collec-
tion localities (seven states in the USA vs. Florida’s Apala-
chicola National Forest), the biology of the organisms  
(fish vs. plants), and the number of student georeferences 
for each locality (1–2 vs. 6–15 respectively). We addressed 
question 1 with both datasets and questions 2 and 3 with 
the many-georeferences-per-location dataset. 

Each of the experiments relied on GEOLocate software 
(www.museum.tulane.edu/geolocate/), which uses an 
automated georeferencing algorithm to make the human 
georeferencing more efficient. The algorithm interprets 
strings of text and provides a suggested point location and 
radius of uncertainty. GEOLocate displays the most likely 
point as a green dot and shows red dots for other pos-
sible, though less likely, points based on the GEOLocate 
algorithm. A user can choose one of these suggestions or 
create another point. GEOLocate also includes features 
that allow a user to view different map layers, expand the 
screen, zoom and pan, mark a spot, measure, and save a 

Figure 1: Label from a plant specimen from the Robert K. Godfrey Herbarium, Florida State University, Tallahassee, FL, 
US, demonstrating the potential challenges of georeferencing collection localities. In this case, the town has changed 
names since 1927, the locality description is imprecise, and the habitat is likely now residential development. Labels 
with such characteristics may be especially difficult for citizen science participants to georeference without local 
knowledge.

http://www.museum.tulane.edu/geolocate/
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point. All participants used GEOLocate to assess, navigate, 
and extract spatial information. 

Fish experiment: Thousands of fish localities each 
georeferenced by one or two students 
In the first experiment, 3,372 U.S. fish collection locali-
ties from Fishnet2 (fishnet2.net/aboutFishNet.html) 
were each georeferenced by one (or occasionally two) 
undergraduate student georeferencers at Tulane Univer-
sity (New Orleans, Louisiana, USA) using GEOLocate’s Col-
laborative Georeferencing platform (museum.tulane.edu/
geolocate/community; CoGe). The data were grouped into 
seven state datasets and distributed among 11 students 
(undergraduate students in Natural Resource Conserva-
tion and Biodiversity Informatics classes taught at Tulane) 
and eight trained and experienced project technicians, 
such that each dataset was georeferenced by at least one 
student and at least one trained, experienced technician. 
Students and technicians corrected the geolocation rec-
ommended by GEOLocate when necessary and saved the 
latitude and longitude of that chosen location. Student 
training involved a 50-minute overview on georeferenc-
ing biodiversity data followed by demonstrations on using 
GEOLocate and CoGe. The technicians were hired specifi-
cally to georeference fish specimen localities as part of a 
research grant. They received two days of training, encom-
passing basic geographic principles, georeferencing meth-
odologies and standards, and project protocols. Many of 
them had GIS experience prior to the project, and all of 
them had months of experience georeferencing localities 
in the project by the time of the experiment. 

At Tulane, data processing and analyses were conducted 
using PostgreSQL 9.3, PostGIS 2.1, Microsoft Access 2010, 
Microsoft Excel 2010, and Microsoft Excel 2013. Distances 
between student and expert points and distances between 
most highly suggested point in GEOLocate and expert 
points were compared. Records that were not resolvable 
by GEOLocate were excluded from GEOLocate compari-
sons. Because we had only one or two student results for 
each technician result for each locality in the fish dataset, 
we could not compute means and medians across student 
results as in the plant experiment. 

Plant experiment: Hundreds of plant localities each 
georeferenced by many students
In the second experiment, 270 plant collection localities 
from Florida’s Apalachicola National Forest (ANF) each 
were georeferenced by 6–15 students at Florida State Uni-
versity (FSU, Tallahassee, Florida, USA) using GEOLocate’s 
standard online platform. The plant collection locality 
description were taken from the database of FSU’s Rob-
ert K. Godfrey Herbarium (www.herbarium.bio.fsu.edu). 
Each student was provided an Excel worksheet with col-
lection information parsed into columns: Specimen bar-
code, scientific name, country, state, county, and locality 
description. The locality description was an aggregation of 
entries in the following of the herbarium’s database fields: 
Nearest Named Place, Special Geographic Unit, Verbatim 
Directions to Locality, and Habitat. An example is “Bris-
tol, Apalachicola National Forest by Fla Rt. 12, S of Bristol, 

Apalachicola National Forest, just within boundary, long-
leaf pine savanna.” An additional column contained links 
that took the student directly to the GEOLocate website 
with the specimen’s locality description preloaded in the 
interface. The full Excel file had 17 different worksheets, 
each listing 16 specimens (with the exception of the last 
worksheet which had only 14 specimens).

Each of 154 Florida State University junior and  senior 
undergraduate students enrolled in the course Plant 
Biology was assigned one worksheet (i.e., 16 or 14 speci-
men localities) from within the full file to georeference. 
As a class, students were provided with both a 30-minute 
training session and written instructions that included a 
step-by-step guide for augmenting the Excel file with a 
latitude and longitude (but not a measure of uncertainty) 
obtained from their work using GEOLocate. Although 
each worksheet was assigned to the same number of stu-
dents, some students did not follow directions, so certain 
worksheets were completed more frequently than others. 
In the end, each specimen was georeferenced 6–15 times 
(mode = 8, median = 9).

When a student followed a specimen’s link to GEOLocate, 
they were asked to use GEOLocate’s automated georefer-
encing algorithm (a button “Georeference”) to produce 
suggested points, then they could pan, zoom, and open 
other map layers to show different features, including 
political boundaries, streets, and aerial photos, until they 
found the closest approximation of the textual descrip-
tion. Then they cut and pasted the latitude and longitude 
into Excel. Completion of these tasks, regardless of accu-
racy, earned the student credit for the required assign-
ment. However, students could opt out of the experiment 
by choosing not to complete an Institutional Review 
Board–approved waiver. Students were given one week 
to complete the assignment; during that time they could 
email one of us (GN) for guidance or help.

Independent of the student work, two local botanists 
with extensive collecting experience in ANF volunteered 
to also complete the georeferencing tasks. As local 
experts, they were familiar with habitat types in the ANF, 
specific plant populations, favored collection areas, and 
field collection protocols. This knowledge provided them 
the advantage over students of being able to more easily 
interpret and georeference label information. These indi-
viduals included a radius of uncertainty with their georef-
erences and made note of challenging or vague locality 
descriptions. The experts produced one point for each 
specimen, which henceforth are referred to as “expert” 
points. 

A small subset of student points in the plant dataset 
were interpreted as outliers and were removed from the 
dataset. Such errors included latitude and/or longitude 
of 0, positive or negative latitude or longitude when the 
opposite was appropriate for the hemisphere, values that 
were incomplete, and values that were placed at the exact 
centroid of the nearby town of Apalachicola (representing 
an occasional mistake by the GEOLocate algorithm that 
students did not always correct; the town lies outside of 
the boundaries of ANF). We consider this data-cleaning 
step to be a reasonable approximation of what can be 
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done by any project doing georeferencing with citizen sci-
ence participants, and are not using any special knowledge 
of the expert points at this step. Analyses were conducted 
with the remaining points in QGIS version 2.6.1 Brighton 
(QGIS Development Team 2014), Environmental Systems 
Research Institute’s ArcGIS version 10.2 (Environmental 
Systems Research Institute 2014), and R statistical soft-
ware version 3.1.1 (R Core Development Team 2014). 

We calculated distance statistics between the expert 
point and points generated by students for each collec-
tion locality, including mean distance of student points 
and minimum and maximum distance of student points. 
For these plant experiment data, we calculated a mean 
and median georeferenced point for each collection local-
ity from the replicate student points using ESRI’s ArcMap 
spatial statistics tools Mean Center and Median Center, 
respectively. The Mean Center is simply the average X 
and average Y coordinate among all the points, while the 
Median Center tool utilizes an iterative algorithm to cal-
culate the point that minimizes the Euclidian distance 
among all the student points for a given specimen record. 
The median point gives less weight to anomalous georef-
erences. For comparison, we also calculated the distance 
between the expert point and those suggested as most 
likely by the GEOLocate algorithm.

Individual students were evaluated for accuracy by 
comparing their mean distance from expert points (as 
measured using uncertainty radii for the specific speci-
mens) for all specimens georeferenced by that individual. 
To determine the increased accuracy brought about by 
removing the least accurate georeferencers, we re-ran 
some of the analyses by first excluding 19 students 
whose complete set of georeferenced points averaged 
100 uncertainty radii or greater from the expert’s points, 
and then by excluding the bottom half (least accurate) 
of georeferencers. The first exclusion removes those par-
ticipants who are perhaps least likely to contribute to a 

citizen science project requiring this skill set, given their 
poor aptitude for it or their poor engagement in the 
activity. The second left us with a proxy for those mem-
bers of the public who are devoted to a citizen science 
project and likely to become experienced in a way that 
becomes recognizable to the project. A disproportionate 
percentage of online tasks often are completed by a very 
small number of committed citizen science participants 
(Eveleigh et al. 2014).

Results
How accurate are student georeferencers?
Fish experiment—Eleven students produced 4,433 
georeferences for 3,372 localities (1,061 localities 
georeferenced twice). The mean distance of student 
points from those of expert georeferencers ranged from 
1.5–75.5 km (mean = 21.3 km). We defined outliers as 
student points that were greater than two standard 
deviations from the overall mean displacement of each 
student’s result from the expert result; outlier distance 
ranged from 13–1884 km across all determinations. 
Georeferences with greater than a 25 km deviation were 
typically placed in the wrong county and/or state, and 
should be detectable through data validation routines 
involving spatial queries against administrative units 
in the absence of expert points. Numbers of outliers 
ranged from just 0–17 georeferences (mean = 6.5) per 
student. Excluding outliers, per-student mean distances 
between student and expert georeferencer determina-
tions decreased to 0.9–40.7 km (overall mean = 8.3). 
Forty percent of student georeferences were within 0.5 
km of the expert points, 53% were within 1 km, and 
81% were within 5 km (Fig. 2). Considering the uncer-
tainty radius assigned by the experts, 71% of student 
points were within one uncertainty radius of the expert, 
and 90% were within 10 (Table 1).

Figure 2: Distribution of the distance of student georeferences from expert points in the fish experiment at Tulane 
University with outliers removed.
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Points compared to 
expert points for each 
experiment

Within 100 
meters

Within 500 
meters

Within 1000 
meters

Within 5,000 
meters

Within 10,000 
meters

Within 20,000 
meters

Individual Student  
Points—Fish (n = 4,433)

791 (18.34%) 1,314 (29.20%) 1,786 (40.47%) 2,941 (66.57%) 3,399 (76.92%) 3,782 (86.66%)

Individual Student  
Point—Plant (n = 2,408)

133 (5.52%) 464 (19.27%) 898 (37.29%) 1,698 (70.51%) 1,950 (80.98%) 2,182 (90.61%)

GEOLocate—Fish (n = 4347) 399 (9.17%) 937 (23.15%) 1439 (33.10%) 2810 (64.64%) 3372 (77.57%) 3858 (88.75%)

GEOLocate—Plant (n = 251) 19 (7.57%) 43 (17.13%) 96 (38.25%) 160 (63.75%) 190 (75.70%) 214 (85.26%)

Mean for all Student 
Points—Plant (n = 270)

50 (18.52%) 196 (72.59%) 222 (82.22%) 250 (92.59%) 266 (98.52%) 269 (99.63%)

Median for all Student 
Points—Plant (n = 270)

15 (5.56%) 69 (25.56%) 132 (48.89%) 221 (81.85%) 246 (91.11%) 267 (98.89%)

Single Best Student Point 
for each Locality—Plant 
(n = 254)

110 (43.30%) 163 (64.17%) 195 (76.77%) 237 (93.30%) 249 (98.03%) 253 (99.06%)

Median for Students minus 
Worst 19—Plant (n = 270)

64 (23.70%) 123 (45.55%) 163 (60.37%) 230 (85.19%) 253 (93.70%) 266 (98.52%)

Median for Best Half of 
Students—Plant (n=254)

60 (23.90%) 102 (40.64%) 150 (59.76%) 218 (86.85%) 240 (95.62%) 251 (98.82%)

Table 2: Comparison of student points, GEOLocate automated points, and median of student points to expert points 
measured by absolute distance for the fish and plant experiments. Because relatively few of the collection locations 
in the fish experiment were georeferenced by multiple students, we do not report comparisons with the consensus 
student points for that experiment.

Table 1: Comparison of student points, consensus student points (using mean and median), and GEOLocate automated 
points to expert points measured by uncertainty radius (UR) for the fish and plant experiments. Because relatively few 
of the collection locations in the fish experiment were georeferenced by multiple students, we do not report compari-
sons with the consensus student points for that experiment.

Points compared to expert 
points for each experiment

<1 UR <2 URs <5 URs <10 URs <100 URs

Individual Student Points—Fish  
(n = 4,433)

3260 (71.07%) 3546 (77.92%) 3897 (83.56%) 4037 (90.30%) 4367 (98.39%)

Individual Student Points—Plant  
(n = 2,408)

365 (15.16%) 627 (26.04%) 1070 (44.44%) 1428 (59.30%) 2254 (93.60%)

GEOLocate—Fish (n = 4347) 2134 (49.09%) 2590 (59.58%) 3062 (70.44%) 3463 (79.66%) 4152 (95.51%)

GEOLocate—Plant (n = 251) 32 (12.75%) 56 (22.31%) 101 (40.24%) 133 (52.99%) 223 (88.88%)

Mean for all Students—Plant  
(n = 270)

33 (12.22%) 56 (20.74%) 110 (37.04%) 155 (57.41%) 252 (93.33%)

Median for all Students—Plant  
(n = 270)

49 (18.15%) 79 (29.26%) 136 (50.37%) 190 (70.37%) 266 (98.52%)

Single Best Student Point for each 
Locality—Plant (n = 254)

99 (38.98%) 138 (54.33%) 204 (80.31%) 223 (87.79%) 254 (100.00%)

Median for Students Minus Worst 
19—Plant Experiment 3 (n = 270)

63 (23.33%) 84 (31.11%) 139 (51.48%) 188 (69.63%) 269 (99.63%)

Median for Best Half of Stu-
dents—Plant (n = 254)

52 (20.47%) 85 (33.46%) 141 (55.51%) 183 (72.05%) 254 (100.00%)

We found that involving students in the process 
increased the percentage of points within each of the 
uncertainty radii cut-offs (Table 1; e.g., 71.07% vs. 49.09%, 
respectively, within 1 uncertainty radius as assigned by 
the expert georeferencers) and each of the absolute dis-
tance cut-offs less than the 10,000 meter cut-off (Table 2).

Plant experiment—A total of 2,425 georeferences were 
produced by students, and after removing outliers, 2,408 
(99%) remained. The mean distance between student 
points and the expert point for each collection locality 
ranged from 0.18–37.08 km, with an overall mean student 
distance from the respective expert point of 4.62 km. 
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To make the comparison between use of the auto-
mated georeferencing algorithm of GEOLocate alone 
and the additional involvement of the student georef-
erencers, we narrowed the number of collection locali-
ties to 251 because GEOLocate’s suggested points for 
the other specimens were returned as errors. The most 
successful consensus georeferencing method (use of the 
median point for the replicate student points) places 
a greater proportion of points within the uncertainty 
radii thresholds than the GEOLocate-suggested point 
(Table 1). When measuring that distance in meters, the 
median point outperforms GEOLocate alone, except at 
a cut-off of 100 m (where GEOLocate alone has a slight 
advantage; Table 2). 

Which method is most effective for producing an 
accurate consensus georeference?
For the plant data, use of the median georeferenced point 
as a consensus of replicate student georeferences is bet-
ter than the mean georeferenced point at each of several 
uncertainty distances from the expert point (e.g., 12.22% 
of the mean points and 18.15% of the median points are 
within 1 uncertainty radius of their expert point; Table 1). 
Unless otherwise indicated, we will use the median geo-
referenced point as the standard for comparison of the 
consensus point with the expert point.

The same is true when we consider distance from the 
expert point using absolute distance (Fig. 3). For more 
than half of the student points in the plant experiment 
(58.60%; 1411 of 2408 points), the median point for a col-
lection locality is at least 10 m closer to the expert point 
than the individual student point itself. About a quarter 
of the student points (25.83%; 622 points) are at least 
10 m closer to the expert points than the median point 

(Table 2). The remainder have similar distances to the 
expert point as the median point. 

Is it useful to differentiate data based on 
georeferencer performance?
About 39% (99 of 254) of the single best student points 
for a collection locality are within one uncertainty radius 
of the expert point for that locality (Table 1), and about 
43% of the single best student points are within 100 m 
of the expert point (Table 2). Examining the 99 single 
best points within one uncertainty radius we found that 
48 (31%) of the 154 students contributed to them and 
just four students (3%) were responsible for 24 of those 
points.

We removed 19 of the 154 students contributing to 
the plant experiment using our threshold for identifying 
the least talented or motivated georeferencers, reducing 
the number of georeferenced points from 2408 to 2095 
and the number of localities from 258 to 254. Using this 
reduced data set, the percentage of localities within one 
uncertainty radius of the expert increased from 18.15% 
with the full dataset to 23.33% (Table 1). Similarly, the 
percentage of localities that fell within 100 meters of the 
expert point increased from 5.56% with the full dataset to 
23.70% with the reduced dataset (Table 2). 

When we included only the best 74 (48%) of the plant 
georeferencers (1185 points), the distance of the median 
points calculated from the experts as measured by uncer-
tainty radii was improved from the results of the full data-
set, but not strikingly (e.g., 18.15% of the medians are 
within one uncertainty radius for the whole dataset vs. 
20.47% for the subset; Table 1). Looking at improvement 
based on the absolute distance, however, shows a marked 
improvement (e.g., 5.56% of the medians are within 

Figure 3: Distribution of the distance between mean (black bars) and median (gray bars) consensus of student replicate 
georeferences from the expert points in the plant experiment at Florida State University with outliers removed.
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100 m for the total dataset vs. 23.90% of the medians for 
this subset vs.; Table 2).

Discussion
Our results provide a first approximation of what can be 
expected from citizen science participants with minimal 
georeferencing training. This is a valuable contribution, 
for while OpenStreetMap (Haklay and Weber 2008) and 
WikiMapia (wikimapia.org) have demonstrated enthusi-
asm for volunteered geographic information (Goodchild 
2007), we are not aware of studies that have assessed the 
quality of citizen science georeferencing of collection 
localities for biodiversity specimens or, more generally, of 
points contributed by georeferencing novices using local-
ity descriptions (e.g., as done by Meier 2012 in another 
domain). We consider the results encouraging and suggest 
that they might serve as a benchmark against which to 
compare future changes to the process, several of which 
we suggest here.

Our use of undergraduate students as proxies for the 
general citizen science population, in the absence of an 
established georeferencing citizen science platform and 
community, merits further discussion. Coleman et al. 
(2009) present a hierarchy of volunteer participation in 
the context of contributing geographic data. By their defi-
nitions, we expect our student volunteers to mostly be 
neophytes—“an individual without a formal background 
in a subject, but who possesses the interest, time, and 
willingness to offer an opinion” (page 338). Whether the 
potential population of citizen science participants who 
would contribute data in this way represents a similar 
fraction of neophytes remains unanswered by our study. 
Potentially a greater fraction of those who would be 
motivated to contribute, and possibly some of our more 
experienced undergraduate volunteers, would qualify as 
expert amateurs—“someone who may know a great deal 
about a subject, practices it passionately on occasion, but 
still does not rely on it for a living”—as would our expert 
volunteers in the plant experiment. (Our experts from the 
fish experiment would qualify as expert professionals in 
Coleman et al.’s scheme—“someone who has studied and 
practices a subject . . . [and] relies on that knowledge for a 
living.”) By Coleman et al.’s estimation, and further analy-
sis by Lauriault and Mooney (2014), “expert amateurs” 
may be the most productive volunteer contributors of 
geographic information, although positive and negative 
motivations vary across projects and can influence rela-
tive involvement of a group. Targeting expert amateurs, 
or educating neophytes to become expert amateurs, in 
the biodiversity community might be an effective strategy 
for increasing contributions and improving their quality 
beyond that reported here. Expert amateurs might be 
found as members of native plant societies, entomologi-
cal clubs, sportsmen’s groups, online communities such 
as iNaturalist (inaturalist.org), and conservation and envi-
ronmental organizations. Members of historical societies 
may provide additional local knowledge and a familiar-
ity with regional geographic and landscape features. 
Future research on the topic could benefit from includ-
ing a broader demographic of citizen science participants 

in experiments, along with additional methods such as  
surveys, to understand the advantages and limitations to 
working with each of these groups.

Despite large differences in the spatial extent of the 
areas considered in the experiments (seven states in the 
US vs. a national forest) and the biology of the organisms 
(fish in aquatic habitat vs. plants in, mostly, terrestrial 
habitat), the experiments produced strikingly similar aver-
age distances between student- and expert-contributed 
points (8.3 km with a range of 0.9–40.7 km and 4.6 km 
with a range of 0.2–37.1 km, respectively). However, when 
the distance is measured by uncertainty radii assigned for 
each collection locality by the experts, differences emerge. 
Relatively more of the contributed fish georeferences 
(71%) are within an uncertainty radius of the expert point 
than the plant georeferences (15%), perhaps because the 
extent of fish habitat is more easily identified on a map 
than that of plants and there is often relatively less of 
it. Also, the relatively larger uncertainty radii of the fish 
experiment (expert mean = 4,136 m, range = 0—457,118 
m) than the plant experiment (mean = 1,054 m, range = 
16–21,095 m) simplified the process for students to place 
a point within the uncertainty radius of the expert in that 
experiment.

Creation of a consensus point from replicates for a col-
lection locality improved upon the overall percentage of 
points within one uncertainty radius in the plant experi-
ment (the fish experiment did not consistently replicate) 
when the consensus was produced as the median point, 
but not the mean point (Table 1). The median is less sen-
sitive to outliers and makes more sense than the mean for 
building consensus in this context. We do not address the 
relationship between number of replicates used to pro-
duce the median and the median’s accuracy here, but the 
relationship has clear importance when designing effi-
cient citizen science projects in the domain. We expect a 
plateau above which more replicates do not improve accu-
racy of the median and therefore might represent wasted 
effort if other statistics are not also being estimated with 
the additional points. We expect that the location of such 
a plateau will vary from project to project for reasons dis-
cussed above (habitat requirements differ, as do typical 
sizes of uncertainty radii), and that location needs to be 
determined in a pilot study specific to that dataset until 
patterns begin to emerge across datasets. The additional 
points beyond those needed to improve the median might 
be important if used to estimate a measure of uncertainty 
for the locality if there is a relationship between the 
spread of points and the uncertainty that an expert might 
assign the locality (e.g., as an uncertainty radius or poly-
gon; Chapman 2006). The relationship between spread 
and uncertainty might plateau at a different place than 
the accuracy of the median.

The accuracy of the data clearly improved beyond that 
produced using the automated GEOLocate algorithm 
when students were part of the workflow. The percent-
age of GEOLocate-generated points within an uncertainty 
radius of the expert points was improved upon by the 
students in both experiments (e.g., 12.75% vs. 15.16% 
within 1 uncertainty radius for the plants; Table 1), and 

http://wikimapia.org/
http://www.inaturalist.org/
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even more so when the median was calculated (18.15%). 
Note that the GEOLocate algorithm may have provided 
an important step in the student and expert contribu-
tions, especially in the fish experiment where the spatial 
extent of possible localities was very large. We actually 
cannot say whether the involvement of a georeferencing 
algorithm improved or reduced the accuracy of student 
points, because the experiment did not make that con-
trast. Future studies may wish to include an additional 
experiment that determines accuracy of citizen science 
participants in the absence of an algorithm. Further con-
sideration of the topic, particularly by researchers in the 
field of human computation and machine learning, could 
investigate how the automated georeferencing algorithm 
could be improved by closing the loop—providing feed-
back to it in the form of citizen-science contributed data.

While the median-point consensus of replicates repre-
sented an improvement on the percentage of individual 
points within threshold numbers of uncertainty radii 
(e.g., 18.15% vs. 15.16% within 1 uncertainty radius for 
the plants; Table 1), the fact that the single best point for 
each locality is even more often within those thresholds 
(38.98% within 1 uncertainty radius for plants; Table 1) 
invites the question: are there ways to assess the likeli-
hood that a contributed point is the best for a collection 
locality in the absence of expert points for all collection 
localities? One way that this might be accomplished is to 
assess the overall performance of georeferencers, assign-
ing them reputation scores that reflect attributes such as 
success with localities for a handful of points that experts 
have georeferenced. A likelihood of success with such 
an approach is suggested by the fact that the 99 single 
best points within one uncertainty radius for plants were 
contributed by 31% of contributors (and not 65%, which 
would be one best per each of 99 of the 154 total stu-
dents). Furthermore, a quarter of those 99 points were 
contributed by just four students. 

We also looked at this relationship in another way, ask-
ing if the accuracy of the median point improves when 
data from only the best georeferencers are considered. In 
the case of thresholds of uncertainty radii, the percentages 
improved at most thresholds, but generally not dramati-
cally (e.g., 50.37% at a threshold of 5 uncertainty radii for 
all georeferencers, 51.48% with exclusion of the 19 worst 
georeferencers, and 55.51% with the exclusion of the 
worst half of georeferencers; Table 1). The improvement 
is most striking, though, when the absolute distance of 
median from expert point is considered at low thresholds 
(e.g., 5.56% within 100 meters for all georeferencers and 
23.70% and 23.90% with exclusion of 19 worst and worst 
half, respectively). This relationship can become especially 
relevant when the fitness for use depends on a precision 
within some absolute distance. For example, considering 
global latitudinal diversity gradients, modeling species 
distributions, and relocating a population are three activi-
ties that typically require increasingly precise data. 

Hunter et al. (2013) provide a case study of an imple-
mentation involving data validation and trust metrics for 
improving the quality and measuring the reliability of citizen 
science data within Coral Watch (www.coralwatch.org).  

A similar approach could be used to develop a weighted 
index of reputation based on some combination of (1) 
total number of user contributions, (2) frequency of user 
contributions, (3) geospatial deviation from known results, 
and (4) geospatial deviation for identical localities from 
users with higher reputation. Liu and Liu (2015) demon-
strate a learning algorithm that can assess the quality of 
crowd-sourced data and provide results from only the 
strongest combination of contributors. The ability to sort 
“good” data from “bad” data, in an environment where the 
correct information is not known at the start, has obvious 
applications to the field of citizen science georeferencing, 
and we anticipate incorporating techniques similar to this 
in future work.

It is important to realize that, as illustrated in Fig. 1, 
there are specimens for which a precise georeference 
is not warranted and for which the actual collection 
locality is obscured by the changes of time. For exam-
ple, 23% of the single best points for the plant localities 
were not within 1 km of the expert point, despite there 
being 6–15 replicates for each. Based on the plant data-
set, types of labels that resulted in large discrepancies 
between expert and student points included these cases: 
a) Directional labels that do not specify how the distance 
is measured. For example, in the case of “Sumatra flat-
woods pond, 16 miles N of Sumatra, flatwoods pond,” 
students measured 16 miles due north, while the experts 
followed the main road out of Sumatra, which veered to 
the northeast. This was a common problem, with three 
of the ten most poorly placed student points falling 
into this category; and b) Labels with overly general or 
contradictory information. For example, in the case of 
“4 miles NE of Sumatra, by Fla. Rt. 379,” there is likely 
an error because Route 379 runs in a northwesterly 
direction from Sumatra. The issue of flagging collection 
localities that are likely to fall into this category for geo-
refencing by experts or even the original collector (if still 
living) merits future consideration. Collection localities 
could perhaps be classified algorithmically with natural 
language processing into those requiring triage of this 
type to make more efficient citizen science engagement 
for georeferencing.

Finally, we recognize that potentially large improve-
ments in accuracy could be gained with a dedicated citi-
zen science platform for georeferencing of this kind. The 
georeferencing software packages that we used for the 
experiments were not created with neophyte contributors 
(sensu Coleman et al. 2009) in mind, and could be tailored 
to them to create more support for their activities (e.g., 
directions, feedback from simple data validation steps, a 
forum for discussion of issues) and that of the data cura-
tors, who could use reputation scores for data processing. 
Such a platform has been proposed for development (but 
not yet funded) as a special crowd-sourced georeferencing 
addition to GEOLocate’s suite of georefencing software. 
The need for such a service is increasing as more and more 
pre-GIS locality records for the world’s billions of biodi-
versity specimens are digitized. The results of the present 
study suggest that novice georeferencers are capable of 
performing this task. 

http://www.coralwatch.org
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